IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet oRCIOx51

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This data sheet updated: 27th January 2006.

$CFCl_2CH_2O_2 + CFCl_2CH_2O_2 \rightarrow CFCl_2CH_2OH + CFCl_2CHO + O_2$ (1) $\rightarrow CFCl_2CH_2O + CFCl_2CH_2O + O_2$ (2)

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $k_{obs} = (4.36 \pm 0.64) \ge 10^{-12}$	298	Wallington and Nielsen, 1991	PR-UVA (a,b)
Branching Ratios $k_2/k \approx 1.0$	298	Tuazon and Atkinson, 1994	UV-P-FTIR (e)

Rate coefficient data ($k = k_1 + k_2$)

Comments

- (a) k_{obs} is based on the measured overall second-order decay of CFCl₂CH₂O₂, defined by $-d[CFCl_2CH_2O_2]/dt = 2k_{obs}[CFCl_2CH_2O_2]^2$. As described in detail by Lesclaux (1997), HO₂ radicals formed from the subsequent chemistry of CFCl₂CH₂O (formed from channel (2)) are expected to lead to secondary removal of CFCl₂CH₂O₂. The true value of *k* is expected to fall in the range $k_{obs}/(1+\alpha) < k < k_{obs}$, where $\alpha = k_2/k$.
- (b) Pulse radiolysis study of CF₂ClCH₃-O₂-SF₆ mixtures over the pressure range 152-1013 mbar. CF₂ClCH₂O₂ radicals were monitored by UV absorption with $\sigma_{250 \text{ nm}} = (3.38 \pm 0.68) \text{ x } 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$.
- (c) Photolysis of Cl₂ in the presence of CFCl₂CH₃-air mixtures at 987 mbar pressure. In situ monitoring of reactants and products by FTIR spectroscopy was consistent with formation of CFCl₂CHO with a yield ca. 100%, once corrections were made for secondary removal.

Preferred Values

 $k = 2.9 \text{ x} 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k_2/k = 1.0 \text{ at } 298 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.4$ at 298 K. $\Delta (k_2/k) = {}^{+0.0}_{-0.2}$ at 298 K.

Comments on Preferred Values

The observed formation of CFCl₂CHO in ca. 100% yield from CFCl₂CH₃ oxidation in the product study of Tuazon and Atkinson (1994) is consistent with the reaction proceeding predominantly *via* the radical-forming channel (2), followed by reaction of CFCl₂CH₂O with O₂ to form CFCl₂CHO and HO₂. This also indicates that secondary removal of CFCl₂CH₂O₂ by reaction with HO₂ must generate CFCl₂CHO as the major carbon-containing product, in a similar fashion to the observed dominant formation of HCOCl from the reaction of HO₂ with CH₂ClO₂ (Wallington et al., 1996).

The preferred value of k at 298 K is derived from the k_{obs} value reported by Wallington and Nielsen (1991). Similar to a procedure adopted by Lesclaux (1997) for peroxy radicals for which the self reaction rate coefficients are \geq ca. 2 x 10⁻¹² cm³ molecule⁻¹ s⁻¹, k is estimated to be $k_{obs}/(1+0.5(k_2/k))$, with this approximation assuming that the secondary reaction of HO₂ with CFCl₂CH₂O₂ competes equally with its removal via HO₂ + HO₂. The reliability range reflects that k has been derived by this approximate procedure. Confirmatory kinetics and product studies are required.

References

Lesclaux, R.: Combination of peroxyl radicals in the gas phase. In 'Peroxyl Radicals', edited by Z.B. Alfassi. John Wiley and Sons, 1997.

Tuazon, E.C. and Atkinson, R.: Environ. Sci. Technol. 28, 2306, 1994.

Wallington, T. J. and Nielsen, O. J.: Int. J. Chem. Kinet. 23, 785, 1991.

Wallington, T. J., Hurley, M. D. and Schneider, W. F.: Chem. Phys. Lett. 251, 164, 1996.