IUPAC Task Group on Atmospheric Chemicl Kinetic Data Evaluation – Data Sheet oBrOx11

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 29th March 2005.

$HO_{2} + CH_{2}BrO_{2} \rightarrow O_{2} + CH_{2}BrO_{2}H$ (1) $\rightarrow O_{2} + HC(O)Br + H_{2}O$ (2)

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/Comments
Absolute Rate Coefficients $(6.7 \pm 3.8) \ge 10^{-12}$	298	Villenave and Lesclaux, 1995	FP-UVA (a)
Branching Ratios $k_1/k \ge 0.85$ $k_2/k \le 0.15$	297	Chen et al., 1995	UVP-FTIR (b)

Rate coefficient data ($k = k_1 + k_2$)

Comments

- (a) Flash photolysis of Cl_2 in the presence of $CH_3Br-CH_3OH-O_2-N_2$ mixtures at a pressure of 1013 mbar. Decays in transient absorptions (with contributions from CH_2BrO_2 and HO_2) were recorded in the wavelength range 250 nm to 280 nm. *k* derived from simulations of the decay traces using an explicit reaction mechanism.
- (b) CH₂BrO₂ and HO₂ radicals were generated from the steady-state photolysis of Cl₂ in the presence of CH₃Br-H₂-air mixtures at 933 mbar. FTIR spectroscopic analysis identified CH₂BrO₂H and HC(O)Br as carbon-containing primary products. The cited branching ratios were derived by taking account of secondary reactions in the system, and the possibility that HCOBr is formed from the in-situ oxidation of CH₂BrO₂H.

Preferred Values

 $k = 6.7 \text{ x } 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k_1/k = 1.0 \text{ at } 298 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.5$ at 298 K. $\Delta (k_1/k) = {}^{+0.0}_{-0.15}$ at 298 K.

Comments on Preferred Values

While the above value of the rate coefficient seems reasonable, it has been derived from the analysis of a comparatively complex chemical system and requires independent verification to reduce the recommended error limits. Within the uncertainty of the determination (Villenave and Lesclaux, 1995), *k* is indistinguishable from that recommended for the reactions of HO₂ with CH₃O₂ and CH₂ClO₂ suggesting that, like Cl, the presence of the Br group has only a minor influence on the rate coefficient. However, the reported dominance of channel (1) (Chen et al., 1995) contrasts with that observed for CH₂ClO₂, for which formation of HC(O)Cl, H₂O and O₂ is the major pathway. Confirmatory product studies are also required.

References

Chen, J., Catoire, V. and Niki, H.: Chem. Phys. Lett. 245, 519, 1995. Villenave, E. and Lesclaux, R.: Chem. Phys. Lett. 236, 376, 1995.