IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet iIOx1

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be re-transmitted or disseminated either electronically or in hard copy without explicit written permission. This data sheet updated: 3rd July 2005.

$O + I_2 \rightarrow IO + I$

 $\Delta H^{\circ} = -89 \text{ kJ} \cdot \text{mol}^{-1}$

k/cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients (1.38 \pm 0.44) x 10 ⁻¹⁰ (1.4 \pm 0.4) x 10 ⁻¹⁰ (1.3 \pm 0.15) x 10 ⁻¹⁰ (1.2 \pm 0.1) x 10 ⁻¹⁰	298 298 295 298	Ray and Watson, 1981 Laszlo et al., 1995 Hölscher et al., 1998 Tucceri et al., 2005	DF-MS (a) PLP-AS (b) PLP-LIF (c) PLP-RF (d)

Rate coefficient data

Comments

- (a) MS detection of I₂ in a large excess of O(³P) atoms. The O(³P) atom concentrations were determined by titration with NO₂. The total pressure was \sim 2.6 mbar.
- (b) $O({}^{3}P)$ atoms were produced by pulsed laser photolysis of N₂O at 193 nm in the presence of I₂, at total pressures of ~260 mbar of N₂. The I₂ concentrations used were comparable to those of $O({}^{3}P)$ atoms. The I₂ and IO radical concentrations were monitored simultaneously by absorption spectroscopy at 530 nm and at 340 nm to 435 nm, respectively, and values of *k* were derived by modeling the I₂ and IO radical time-concentration profiles.
- (c) O(³P) atoms were produced by pulsed laser photolysis of N₂O at 193 nm in the presence of an excess of I₂, at total pressures of 40 mbar of N₂. IO radical concentrations were monitored by LIF at 445.05 nm.
- (d) O(³P) atoms were produced by pulsed laser photolysis of NO₂ at 351 nm in the presence of an excess of I₂, which was monitored in situ at 500 nm. Total pressures of 80 or 266 mbar of He or 80 mbar N₂ were used. The I atom product was monitored by RF.

Preferred Values

 $k = 1.25 \text{ x } 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.1$ at 298 K.

Comments on Preferred Values

The recommended rate coefficient is based on the data of Hölscher et al. (1998) and Tucceri et al. (2005), both of whom employed sufficiently sensitive detection schemes that the IO self reaction was unimportant, and a simple exponential behaviour of IO and I was therefore observed. Note that the recommended value is within the large errors limits presented by Ray

and Watson (1981) and Laszlo et al. (1995). The rate coefficient is large, approaching the gas kinetic collisional value and suggesting a near zero temperature dependence for k. This is in accord with the molecular beam study of the reaction by Parrish and Herschbach (1973).

References

Hölscher, D., Fockenberg, Chr. and Zellner, R.: Ber. Bunsenges. Phys. Chem. 102, 716, 1998.

Laszlo, B., Kurylo, M. J. and Huie, R. E.: J. Phys. Chem. 99, 11701, 1995.

Parrish, D. D. and Herschbach, D. R.: J. Am. Chem. Soc. 95, 6133, 1973.

Ray, G. W. and Watson, R. T.: J. Phys. Chem. 85, 2955, 1981.

Tucceri, M. E., Dillon, T. J. and Crowley, J. N.: Phys. Chem. Chem. Phys. 7, 1657, 2005.