IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet iFOx14

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be re-transmitted or disseminated either electronically or in hard copy without explicit written permission. This data sheet updated: 22th July 2003.

$FO_2 + NO \rightarrow FNO + O_2$

 $\Delta H^{\circ} = -182 \text{ kJ} \cdot \text{mol}^{-1}$

Rate coefficient data

k/cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $(1.5 \pm 0.1) \ge 10^{-12}$ $7.5 \ge 10^{-12} \exp[-(688 \pm 377)/T]$ $(8.5 \pm 1.3) \ge 10^{-13}$	298 190-298 298	Sehested <i>et al.</i> , 1994 ¹ Li, Friedl, and Sander, 1995 ²	PR-UVA (a) DF-MS (b)

Comments

- (a) Pulse radiolysis of NO-O₂-SF₆ mixtures at 1 bar SF₆. The formation of FNO was monitored in absorption at 310.5 nm. The yield of FNO was determined to be $(100 \pm 14)\%$.
- (b) First-order decay rates of FO_2 in the presence of excess NO were monitored by mass spectrometry at a total pressure of 1.3 mbar He. The yield of FNO was found to be nearly 100%.

Preferred Values

 $k = 7.5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k = 7.5 \times 10^{-12} \exp(-690/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 190 \text{ K to } 300 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.3$ at 298 K. $\Delta (E/R) = \pm 400$ K.

Comments on Preferred Values

The preferred values are based on results of the temperature-dependent study of Li *et al.*² The higher room temperature rate coefficient of Sehested *et al.*¹ is encompassed within the assigned uncertainty limits. The low barrier to form FNO may indicate that the reaction proceeds via formation of a short lived FOONO complex.³

References

- J. Sehested, K. Sehested, O. J. Nielsen, and T. J. Wallington, J. Phys. Chem. 98, 6731 (1994). 1
- ² Z. Li, R. R. Friedl, and S. P. Sander, J. Phys. Chem. 99, 13445 (1995).
 ³ T. S. Dibble and J. S. Francisco, J. Am Chem. Soc. 119, 2894 (1997).