IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet iClOx33

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be re-transmitted or disseminated either electronically or in hard copy without explicit written permission. This data sheet updated: 23th July 2003.

$$CIO + NO_3 \rightarrow CIOO + NO_2$$
(1)
 $\rightarrow OCIO + NO_2$ (2)

 $\Delta H^{\circ}(1) = -44.7 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H^{\circ}(2) = -47.5 \text{ kJ} \cdot \text{mol}^{-1}$

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$(4.0 \pm 1.6) \ge 10^{-13}$	296	Cox <i>et al.</i> , 1984 ¹	MM-A
$1.6 \ge 10^{-12} \exp[-(420 \pm 200)/T]$	278-338	Cox <i>et al.</i> , 1987 ²	MM-A (a)
$4.0 \ge 10^{-13}$	300		
$(5.0 \pm 1.4) \ge 10^{-13}$	210-353	Biggs et al., 1991 ³	DF-A/MS (b)
$(4.61 \pm 0.6) \ge 10^{-13}$	300	Kukui <i>et al.</i> , 1994 ⁴	DF-MS (c)
$k_2 = (1.46 \pm 0.4) \times 10^{-13}$	300		
Branching Ratios			
$k_1/k = 0.73$	300	Cox <i>et al.</i> , 1987 ²	MM-A (a)
$k_2/k = 0.14 \pm 0.13$	216	Biggs et al., 1991 ³	DF-A/MS (b)
$k_2/k = 0.20 \pm 0.10$	297		
$k_2/k = 0.035 \pm 0.05$	353		

Rate coefficient data ($k = k_1 + k_2$)

Comments

- (a) Derived from computer analysis of the NO₃ radical and ClO radical profiles.
- (b) Pseudo-first-order decay of NO₃ in excess ClO was determined by optical absorption at 662 nm, using a cross-section of 1.7×10^{-17} cm² molecule⁻¹. Product branching ratios were measured with a quadrupole mass spectrometer.
- (c) Rate coefficients k were obtained from the first-order NO₃ radical decays in the presence of excess ClO radicals and O₃. Rate coefficients k_2 were obtained from the decays of ClO radicals in the presence of excess NO₃ radicals, with ClOO radicals formed in channel (1) reforming ClO radicals by the reactions ClOO \rightarrow Cl + O₂ and Cl + NO₃ \rightarrow ClO + NO₂. This study⁴ supersedes the earlier study of Becker *et al.*⁵ from the same laboratory.

Preferred Values

 $k = 4.6 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, independent of temperature over the range 210 K to 360 K. $k_2 = 1.2 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ *Reliability*

 $\Delta \log k = \pm 0.2$ at 298 K.

 $\Delta \log k_2 = \pm 0.3$ at 298 K. $\Delta (E/R) = \pm 400$ K.

Comments on Preferred Values

The preferred 298 K value is based on the results of Kukui *et al.*,⁴ which are in agreement with the data of Cox *et al.*^{1,2} and Biggs *et al.*³ The results of Cox *et al.*² are consistent with those of Biggs *et al.*,³ who reported that the rate coefficient is independent of temperature over the range 210 K to 353 K. The two direct measurements of the branching ratio k_2/k , of 0.20 ± 0.10 at 297 K³ and 0.32 ± 0.1 at 300 K,⁴ are in agreement that channel (1) dominates, and the preferred value of k_2 is based on the results of these two studies.^{3,4} From a study of the OCIO-NO₃ system, Friedl *et al.*⁶ conclude that at 220 K and 298 K the major reaction channel is channel (1), in agreement with the conclusions of Cox *et al.*,² Biggs *et al.*³ and Kukui *et al.*⁴

References

- ¹ R. A. Cox, R. A. Barton, E. Ljungstrom, and D. W. Stocker, Chem. Phys. Lett. **108**, 228 (1984).
- ² R. A. Cox, M. Fowles, D. Moulton, and R. P. Wayne, J. Phys. Chem. **91**, 3361 (1987).
- ³ P. Biggs, M. H. Harwood, A. D. Parr, and R. P. Wayne, J. Phys. Chem. **95**, 7746 (1991).
- ⁴ A. Kukui, T. P. W. Jungkamp, and R. N. Schindler, Ber. Bunsenges. Phys. Chem. **98**, 1619 (1994).
- ⁵ E. Becker, U. Wille, M. M. Rahman, and R. N. Schindler, Ber. Bunsenges. Phys. Chem. **95**, 1173 (1991).
- ⁶ R. R. Friedl, S. P. Sander, and Y. L. Yung, J. Phys. Chem. 96, 7490 (1992).