IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet X_VOC17

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This data sheet last evaluated January 2008 (with changes to the preferred values).

Cl + CH ₃ CH(OH)CH ₃	\rightarrow CH ₃ C(OH)CH ₃ + HCl	(1)
	\rightarrow CH ₃ CH(OH)CH ₂ + HCl	(2)

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $(0,11+0,60) \times 10^{11}$	205	Tokatoni at al. 2005	
$(9.11 \pm 0.00) \times 10$ Relative Rate Coefficients	293	Taketani et al., 2003	LP-LIF (a)
$(8.80 \pm 0.35) \ge 10^{-11}$	298 ± 2	Nelson et al., 1990	RR (b)
$(7.85 \pm 0.39) \ge 10^{-11}$	295	Wu et al., 2003	RR (c)
$(8.77 \pm 0.78) \ge 10^{-11}$	295	Wu et al., 2003	RR (d)
$(8.14 \pm 0.51) \ge 10^{-11}$	296	Yamanaka et al., 2007	RR (e)
$(9.37 \pm 0.72) \ge 10^{-11}$	296	Yamanaka et al., 2007	RR (f)
Branching Ratios			
$k_1 / k = (0.85 \pm 0.07)$	296	Yamanaka et al., 2007	(g)
$k_2 / k = (0.15 \pm 0.07)$			

Rate coefficient data, $k = k_1 + k_2$

Comments

- (a) 193 nm photolysis of HCl to generate both excited $Cl({}^{2}P_{1/2})$ and ground state $Cl({}^{2}P_{3/2})$, which were detected using VUV LIF at 135.2 and 134.7 nm, respectively. $Cl({}^{2}P_{3/2})$ decays were monitored in presence of CF₄ to ensure removal of $Cl({}^{2}P_{1/2})$. The rate coefficient for excited Cl atoms was determined as $(8.5 \pm 2.5) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.
- (b) Cl atoms were generated by the photolysis of Cl₂ or C(O)Cl₂ in isopropyl alcohol-cyclohexane-O₂ (or N₂) mixtures at 1 bar pressure. The decay rates of isopropyl alcohol and cyclohexane were measured, and rate coefficient ratio placed on an absolute basis by use of k(Cl + cyclohexane) / k(Cl + n-butane) = 1.59 (Aschmann and Atkinson, 1995) and $k(Cl + n-butane) = 2.05 \times 10^{-10} \text{ cm}^3$ molecule⁻¹ s⁻¹ (IUPAC, 2008).
- (c) Photolysis of Cl₂ in presence of *i*-C₃H₇OH using propane as reference reactant and 1 atmosphere pressure of air as bath gas. Reactants analysed by GC. Rate coefficient ratio $k(Cl + i-C_3H_7OH) / k(Cl + C_3H_8) = (0.561 \pm 0.028)$ was put on an absolute basis using $k(Cl + C_3H_8) = 1.4 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ (IUPAC, 2008).
- (d) Photolysis of Cl₂ in presence of *i*-C₃H₇OH using cyclohexane as reference reactant and 1 atmosphere pressure of air as bath gas. Reactants analysed by GC. Rate coefficient ratio $k(Cl + i-C_3H_7OH) / k(Cl + cyclohexane) = (0.269 \pm 0.024)$ was put on an absolute basis using $k(Cl + cyclohexane) = 3.26 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ which was derived using k(Cl + cyclohexane) / k(Cl + n-butane) = 1.59 (Aschmann and Atkinson, 1995) and $k(Cl + n-butane) = 2.05 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ (IUPAC, 2008).

- (e) Photolysis of Cl₂ in presence of *i*-C₃H₇OH using C₂H₂ as reference reactant and 933 mbar N₂ as bath gas. $k(i-C_3H_7OH) / k(C_2H_2) = (1.60 \pm 0.10)$ was obtained and placed on an absolute basis using $k(C_2H_2) = 5.09 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ (IUPAC, 2008).
- (f) Photolysis of Cl₂ in presence of *i*-C₃H₇OH using C₂H₄ as reference reactant and 933 mbar N₂ as bath gas. k(i-C₃H₇OH) / $k(C_2H_4) = (0.91 \pm 0.07)$ was obtained and placed on an absolute basis using $k(C_2H_4) = 1.03 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ (IUPAC, 2008).
- (g) Branching ratios obtained by measuring products resulting from reaction of the primary radicals CH₃C(OH)CH₃ and CH₃CH(OH)CH₂ with Cl₂ and their decomposition products.

Preferred Values

 $k = 8.7 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k_1 = 7.4 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k_2 = 1.3 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.06$ at 298 K. $\Delta \log k_1 = \pm 0.10$ at 298 K. $\Delta \log k_2 = \pm 0.10$ at 298 K.

Comments on Preferred Values

The six, room temperature, studies of this reaction are in good agreement and the preferred value of k is an unweighted average. The preferred values for k_1 and k_2 are based on the only measurements of the branching ratios available (Yamanaka et al., 2007).

References

Aschmann, S. M. and Atkinson, R.: Int. J. Chem. Kinet. 27, 613, 1995.

IUPAC: http://iupac.pole-ether.fr, 2013.

Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J. and Nielsen, O. J.: Int. J. Chem. Kinet. 22, 1111, 1990.

Taketani, F., Takahashi, K., Matsumi, Y. and Wallington, T. J.: J. Phys. Chem. A 109, 3955, 2005.

Wu, H., Mu, Y., Zhang, X. and Jiang, G.: Int. J. Chem. Kinet. 35, 81, 2003.

Yamanaka, T., Kawasaki, M., Hurley, M. D., Wallington, T. J., Schneider, W. F. and Bruce, J.: Phys. Chem. Chem. Phys. 9, 4211, 2007.