IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet SOx62

Website: <u>http://iupac.pole-ether.fr</u>. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 5th September 2006.

$CH_3SO + NO_2 \rightarrow products$

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $(3 \pm 2) \ge 10^{-11}$ $(8 \pm 5) \ge 10^{-12}$ $(1.2 \pm 0.25) \ge 10^{-11}$ $(1.5 \pm 0.4) \ge 10^{-11}$	298 298 298 300	Mellouki et al., 1988 Tyndall and Ravishankara, 1989 Dominé et al., 1990 Kukui et al, 2000	DF-MS PLP-LIF DF-MS (a) PLP-LIF, DF-LIF

Rate coefficient data

Comment

(a) PLP of CH₃S₂CH₃/NO₂ mixtures at 351 and 248 nm relative to CH₃I/NO₂ at 351 nm in the range 16-814 mbar He at 300 K with LIF detection of CH₃O. The temporal profile of CH₃O was monitored in order to obtain *k* by fitting which was found to be independent of pressure. Supporting measurements on pressure-dependent CH₃ yields in the range 243-333 K and 16-814 mbar He have been performed. Ancillary measurements of absolute SO₂ yields at 1.3 mbar He result in 1.0 ± 0.1 using Cl + CH₃SH in DF-LIF measurements.

Preferred Values

 $k = 1.2 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.2$ at 298 K.

Comments on Preferred Values

The measured values (Mellouki et al., 1988; Tyndall and Ravishankara, 1989; Dominé et al., 1990, Kukui et al., 2000) of *k* at 298 K agree within their error limits, some of which are substantial. The rate coefficient for this reaction is difficult to measure because of the lack of a clean primary source of CH_3SO radicals and the complexity of the secondary chemistry. The two most recent determinations (Dominé et al., 1990; Kukui et al., 2000) agree well with each other, the latter of which being a relative rate study extended to 814 mbar (He) using $CH_3 + NO_2$ as a reference reaction. The preferred value is that of Dominé et al. (1990) as it agrees with all studies within the given uncertainty limits.

References

Dominé, F., Murrells, T. P. and Howard, C. J.: J. Phys. Chem. 94, 5839, 1990. Kukui, A., Bossoutrot, V., Laverdet, G. and Le Bras, G.: J. Phys. Chem. A 104, 935, 2000. Mellouki, A., Jourdain, J. L. and Le Bras, G.: Chem. Phys. Lett. 148, 231, 1988. Tyndall, G. S. and Ravishankara, A. R.: J. Phys. Chem. 93, 2426, 1989.