IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet SOx59

Website: <u>http://iupac.pole-ether.fr</u>. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 19th November 2001.

$CH_3S + NO + M \rightarrow CH_3SNO + M$

Low-pressure rate coefficients

k/cm^3 molecule⁻¹ s⁻¹ Temp./ Reference Technique/ Κ Comments Absolute Rate Coefficients $(3.24 \pm 0.36) \ge 10^{-29} [N_2]$ 295 Balla, Nelson and McDonald, 1986¹ (a) $(1.43 \pm 0.36) \ge 10^{-29} [N_2]$ 351 $(1.13 \pm 0.20) \ge 10^{-29} [N_2]$ 397 $(5.84 \pm 0.66) \ge 10^{-30} [N_2]$ 453

Rate coefficient data

Comments

(a) Pulsed laser photolysis of (CH₃S)₂-NO-N₂ (or SF₆) mixtures at 266 nm, with CH₃S being monitored by LIF. Lower part of the falloff curves were measured over the pressure range 2-400 mbar (1.5-300 Torr) of N₂. Falloff extrapolations were carried out with fitted values of *F*_c of 0.6, 0.86, 0.77, and 0.94 at 295, 351, 397, and 453 K, respectively.

Preferred Values

 $k_0 = 3.3 \times 10^{-29} (T/300)^{-4} [N_2] \text{ cm}^3$ molecule⁻¹ s⁻¹ over the temperature range 290-450 K. This value was obtained by fitting to the pressure and temperature dependent data in N₂ using a temperature independent values of Fc = 0.54 and k_∞ derived from data in SF₆ (see below).

Reliability

 $\Delta \log k_0 = 0.3$ at 298 K. $\Delta n = \pm 2$.

Comments on Preferred Values

The preferred values are based on the data of Balla *et al.*¹ A further determination in N_2 at a single temperature and pressure (298 K and 25 Torr) by Turnipseed *et al.*² is in good agreement. Although the

falloff extrapolations in ref. 1 were made with a theoretically improbable temperature coefficient of F_c , the low-pressure rate coefficients are much less influenced by this extrapolation than the high-pressure rate coefficients.

High-pressure rate coefficients

Rate coefficient data

k_{∞}/cm^3 molecule ⁻¹ s ⁻¹	Temp./ K	Reference	Technique/ Comments
Absolute Rate Coefficients 1.81 x $10^{-12} \exp(900/T)$ (3.97 ± 0.44) x 10^{-11} in 300 Torr SF ₆	295-453 295	Balla, Nelson and McDonald, 1986 ¹	(a)

Comments

- (a) See comment (a) for k_0 . High-pressure limit was obtained from measurements at 267 and 400 mbar (200 and 300 Torr) of SF₆.
- (b) Based on the data of Balla *et al*.¹
- (c) See Comments on Preferred Values.

Preferred Values

 $k_{\infty} = 4.0 \text{ x } 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹, independent of temperature over the range 290-450 K.

Reliability

 $\Delta \log k_{\infty} = \pm 0.5$ over the temperature range 290-450 K.

Comments on Preferred Values

The negative temperature coefficient of k_{∞} reported in ref. 1 is most probably due to an increasing underestimate of the falloff corrections with increasing temperature. We recommend the use of the extrapolated k_{∞} value at 298 K over large temperature ranges together with $F_c = 0.54$. Along with the values recommended for k_0 above, this parameterisation accurately reproduces all the data in N₂.

Intermediate Falloff Range

Rate coefficient data

k/cm ³ molecule ⁻¹ s ⁻¹	P/mbar	М	Temp./K	Reference	Comments
$\begin{array}{l} (1.69\pm 0.04) \ x \ 10^{-11} \\ (1.30\pm 0.09) \ x \ 10^{-11} \\ (1.89\pm 0.08) \ x \ 10^{11} \end{array}$	28 25 25	He He He	227 242 242	Turnipseed, Barone and Ravishankara, 1993 ³	(a)

Comments

(a) CH₃S radicals were generated by either photolysis of dimethyl sulfide at 193 nm or photolysis of dimethyl disulfide at 248 nm. The decay of CH₃S radical concentrations was followed by LIF. Experiments were performed under slow gas flow conditions.

References

- ¹ R. J. Balla, H. H. Nelson, and J. R. McDonald, Chem. Phys. **109**, 101 (1986).
- ² A. A. Turnipseed, S. B. Barone, and A. R. Ravishankara, J. Phys. Chem. **100**, 14703 (1996).
- ³ A. A. Turnipseed, S. B. Barone, and A. R. Ravishankara, J. Phys. Chem. **97**, 5926 (1993).