IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet SOx19

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 19th November 2001.

$HOCS_2 + M \rightarrow HO + CS_2 + M$

 $\Lambda H^{\circ} = 44.0 \text{ kJ} \cdot \text{mol}^{-1}$

Rate coefficient data				
$k_0[M]/s^{-1}$	Temp./K	Reference	Technique/ Comments	
Absolute Rate Coefficients				
$1.3 \ge 10^4$ at 0.100 bar [N ₂]	255	Hynes, Wine and Nicovich, 1988 ¹	PLP-LIF (a)	
$2.6 \text{ x } 10^4$ at 0.108 bar [N ₂]	280	-		
$4.3 \ x \ 10^3$ at 0.020 bar $[N_2]$	277	Murrells, Lovejoy and Ravishankara, 1990 ²	PLP-LIF (b)	
$3.0 \ x \ 10^4$ at 0.032 bar $[N_2]$	298			
7.36 x 10 ⁻¹⁵ [He]	298	Diau and Lee, 1991 ³	PLP-LIF (c)	
2.14 x 10 ⁻¹⁵ [He]	269			
0.46 x 10 ⁻¹⁵ [He]	249			

Low-pressure rate coefficients

Comments

- (a) Photolysis at 298 K in mixtures of CS₂ and He, N₂, air or O₂. Pressure range 87-920 mbar (65-690 Torr). A value of K_c (297 K) = 1.39 x 10⁻¹⁷ cm³ molecule⁻¹ was obtained for the equilibrium between HO + CS₂ and HOCS₂ as well as K_c (247 K) = 3.5 x 10⁻¹⁶ cm³ molecule⁻¹.
- (b) Photolysis of H_2O_2 at 248 nm and 266 nm in He-N₂-CS₂ or He-SF₆-CS₂ mixtures. Pressure range = 12-80 mbar (9-60 Torr). The effect of O_2 [0.7-20 mbar (0.5-15 Torr)] on the rate was studied. K_c $(299 \text{ K}) = 1.7 \text{ x } 10^{-17} \text{ cm}^3 \text{ molecule}^{-1}$, $K_c (274 \text{ K}) = 7.5 \text{ x } 10^{-17} \text{ cm}^3 \text{ molecule}^{-1}$ and $K_c (249 \text{ K}) = 5.1 \text{ x}$ 10^{-16} cm³ molecule⁻¹ were obtained for the equilibrium between HO + CS₂ and HOCS₂.
- (c) Photolysis of H₂O₂ at 248 nm in mixtures of CS₂ and He or Ar. Pressure range 12-360 mbar (9-270) Torr of He. The effect of CS₂ on the rate was studied. K_c (298 K) = 0.87 x 10⁻¹⁷ cm³ molecule⁻¹, K_c $(273 \text{ K}) = 4.2 \text{ x } 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ and } K_c (249 \text{ K}) = 2.6 \text{ x } 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ were obtained for}$ the equilibrium between HO + CS_2 and HOCS₂.

Preferred Values

 $k_0 = 4.8 \ge 10^{-14} [N_2] \text{ s}^{-1}$ at 298 K. $k_0 = 1.6 \ge 10^{-6} \exp(-5160/T) [N_2] \text{ s}^{-1}$ over the temperature range 250-300 K.

Reliability

 $\Delta \log k_0 = \pm 0.5$ at 298 K. $\Delta (E/R) = \pm 500$ K.

Comments on Preferred Values

The preferred values are based on a falloff representation from refs. 1 and 2 of the data for the reverse process HO + CS₂ + M \rightarrow HOCS₂ + M and the determination of the equilibrium constant from the same work. The data from ref. 3 are not consistent with this evaluation (with differences of about a factor of 2). HOCS₂ formation and dissociation are characterized by an equilibrium constant of $K_c = 5.16 \times 10^{-25} \exp(5160/T) \text{ cm}^3$ molecule⁻¹, such as derived from the data of ref. 2.

High-pressure rate coefficients Rate coefficient data

$k_{\infty}/\mathrm{s}^{-1}$	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients 3.1×10^4 at 0.907 bar $[N_2]$ 6.5×10^4 at 0.913 bar $[N_2]$ 2.2×10^5 at 0.880 bar $[N_1]$	252 Hynes, 270	Hynes, Wine and Nicovich, 1988 ¹	PLP-LIF (a)
$7.4 \ge 10^{4}$	298	Bulatov <i>et al.</i> , 1988^4	PLP-LIF (b)

Comments

(a) See comment (a) for k_0 .

(b) Photolysis of O₃ in the presence of H₂O, CS₂ and Ar. Rate of HOCS₂ formation and decomposition measured and evaluated with an equilibrium constant of $K_c = 2.6 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1}$.

Preferred Values

 $k_{\infty} = 4.8 \ge 10^5 \text{ s}^{-1} \text{ at } 298 \text{ K.}$ $k_{\infty} = 1.6 \ge 10^{13} \exp(-5160/T) \text{ s}^{-1} \text{ over the temperature range } 250-300 \text{ K.}$

Reliability

 $\Delta \log k_{\infty} = \pm 0.5$ at 298 K. $\Delta (E/R) = \pm 500$ K. Comments on Preferred Values The preferred values are based on the falloff extrapolation of the data for the reverse reaction and the equilibrium constant $K_c = 5.16 \times 10^{-25} \exp(5160/T)$ cm³ molecule⁻¹ from ref. 2. Falloff curves are constructed with an estimated value of $F_c = 0.8$. The small preexponential factor of k_{∞} can be explained theoretically as being due to the low bond energy of HOCS₂. For discussion of the mechanism see refs. 1, 2 and 5.

References

- ¹ A. J. Hynes, P. H. Wine, and J. M. Nicovich, J. Phys. Chem. **92**, 3846 (1988).
- ² T. P. Murrells, E. R. Lovejoy, and A. R. Ravishankara, J. Phys. Chem. **94**, 2381 (1990).
- ³ E. W.-G. Diau and Y.-P. Lee, J. Phys. Chem. **95**, 379 (1991).
- ⁴ V. P. Bulatov, S. G. Cheskis, A. A. Iogansen, P. V. Kulatov, O. M. Sarkisov, and E. Hassinen, Chem. Phys. Lett. **153**, 258 (1988).
- ⁵ E. R. Lovejoy, T. P. Murrells, A. R. Ravishankara, and C. J. Howard, J. Phys. Chem. **94**, 2386 (1990).