IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet SOx11

Website: <u>http://iupac.pole-ether.fr</u>. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 19th November 2001.

$Cl + CS_2 + O_2 \rightarrow products$

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i> <5 x 10 ⁻¹⁵ (air, 400 mbar)	293	Nicovich et al., 1990	(a)
<i>Relative Rate Coefficients</i> (0.83 ± 0.17) x 10 ⁻¹³ (air, 1013 mbar) <4 x 10 ⁻¹⁵ (air, 933 mbar)	298 298	Martin et al., 1987 Wallington et al., 1991	RR (b) RR (c)

Rate coefficient data

Comments

- (a) Pulsed laser photolysis of Cl_2 in CS_2 - N_2 - O_2 mixtures over the pressure range of 40-400 mbar and the temperature range of 193-258 K. [Cl] was monitored by resonance fluorescence. Experiments in absence of O_2 reveal reversible adduct formation and establishment of equilibrium between Cl, CS_2 and CS_2Cl . Thermodynamic parameters for equilibrium derived. The upper limit tabulated for overall removal of CS_2 in presence of O_2 is for all channels of $CS_2Cl + O_2$ reaction which do not lead to Cl atom formation.
- (b) Steady state photolysis of Cl_2 in presence of CS_2 , N_2 , O_2 , and reference compound (CH_4 or CH_3Cl) at 1013 mbar total pressure. [CS_2] and [CH_4] or [CH_3Cl] were monitored by mass spectrometry. $k(Cl + CH_3Cl) = 4.9 \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹ and $k(Cl + CH_4) = 1.0 \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹ were used to put *k* on an absolute basis (IUPAC, current recommendation).
- (c) Steady state photolysis of Cl₂ in the presence of CS₂, N₂, O₂ and the reference compound (CH₄, CH₃Cl or CHF₂Cl). [CS₂] and the concentration of the reference compound was monitored by FTIR. CH₄ and CH₃Cl were shown to be unsuitable as reference compounds. Value of $k(Cl + CHF_2Cl)/k(Cl + CH_4) < 0.04$ measured in same study and combined with $k(Cl + CH_4) = 1.0 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ and measured $k(Cl + CS_2)/k(Cl + CHF_2Cl)$ in presence of O₂ to give tabulated upper limit to k.

Preferred Values

 $k = 4 \ge 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K in air at 1 bar.

Comments on Preferred Values

The overall reaction of Cl with CS_2 is slow. Nicovich et al. (1990) have shown that it proceeds initially by rapid formation of the $ClCS_2$ adduct, as suggested earlier by Martin et al., (1987), but the

subsequent reaction of the adduct with O_2 appears to be slow. The Cl atom is most likely weakly bound to a S atom in the initially formed adduct, which can then isomerise to form an SC(Cl)S adduct (see Wang and Phillips, 2002 and references to other theoretical studies therein).

The recommended upper limit is that of Wallington et al. (1991) which agrees with the work of Nicovich et al. (1990). Wallington et al. (1991) have suggested that the value obtained by Martin et al. (1987) was erroneously high due to complexities in their system arising from HO radical production from the reference compounds that were chosen.

References

IUPAC, http://iupac.pole-ether.fr

Martin, D., Barnes, I. and Becker, K. H.: Chem. Phys. Lett., 140, 195, 1987. Nicovich, J. M., Shackelford, C. J. and Wine, P. H.: J. Phys. Chem., 94, 2896, 1990. Wallington, T. J., Andino, J. M. and Potts, A. R.: Chem. Phys. Lett., 176, 103, 1991. Wang, D. and Phillips, D. L.: Chem. Phys. Lett., 362, 205, 2002.