Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheets for Halogenated Oxy Radical Decomposition; oFOx45 – oFOx54 and oRClOx1 – oRClOx33.

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

The citation for this data sheet is: Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, http://iupac.pole-ether.fr. This datasheet last evaluated: June 2014; last change in preferred values: March 2006.

$R_1(R_2)CHO + O_2 \rightarrow R_1COR_2 + HO_2 \text{ (or } \rightarrow \text{ products)}$ (1)

 $R_1(R_2)$ CHO (+ M) \rightarrow products

(2)

R = alkyl, halogenated alkyl, H or halogen atom

Reactions	k_1/k_2 /cm ² molecule ⁻¹	Temp/K	Reference	Com	nments
$\frac{\text{CH}_2\text{FO} + \text{O}_2}{\text{HCOF} + \text{HO}_2} \rightarrow$	(1)	$k_1[O_2] \gg k_2$ (933 mbar,air)	298	Edney and Driscoll, 1992	(a)
$\begin{array}{rcl} CH_2FO & + & M & \rightarrow \\ HCOF + H + M & \end{array}$	(2)	$k_1[O_2] \gg k_2$ (986 mbar.air)	298	Tuazon and Atkinson, 1993	(a)
$CH_3CF_2O + O_2 \rightarrow$	(1)	$k_1[O_2] \ll k_2$ (933 mbar air)	298	Edney and Driscoll, 1992	(b)
$\begin{array}{rcl} \text{CH}_3\text{CF}_2\text{O} &+ & \text{M} &\rightarrow \\ \text{CH}_3 + \text{COF}_2 + & \text{M} \end{array}$	(2)	$k_1[O_2] \ll k_2$ (986 mbar,air)	298	Tuazon and Atkinson, 1993	(c)
$CH_2 FCHFO + O_2 \rightarrow CH_2FCOF + HO_2$	(1)	$k_1[O_2] \gg k_2$ (933 mbar,air)	296	Wallington et al., 1994	(d)
$\begin{array}{l} CH_2 \ FCHFO + M \rightarrow \\ CH_2F+ \ HCOF + M \end{array}$	(2)				
$CF_3CHFO + O_2 \rightarrow CF_3COF + HO_2$	(1)	1.58 x 10 ⁻²⁵ exp(3600/T)	261-353	Wallington et al., 1992	(e)
$\begin{array}{rcl} CF_{3}CHFO & + & M & \rightarrow \\ CF_{3} + HCOF + & M \end{array}$	(2)	2.8 x 10 ⁻²⁰ (2 atm)	298		
		3.2 x 10 ⁻²⁵ exp(3510/T)	273-320	Tuazon and Atkinson, 1993	(f)
		4.5 x 10 ⁻²⁰ (986 mbar)	298		
		$k_2 = 3.7 \times 10^7 \exp(-2200/T)s^{-1}$	211-372	Maricq and Szente, 1992	(g)
		$k_2 = 2.3 \times 10^4 \text{ s}^{-1}$ (306mbar)	298		
		1.18 x 10 ⁻²⁴ exp(2860/T)	235-318	Rattigan et al., 1994	(h)
		1.7 x 10 ⁻²⁰ (1 bar)	298		
		1.5 x 10 ⁻¹⁹ (50 mbar)	300	Bednarek et al, 1996	(i)
		$k_1 = 2.7 \times 10^{-15}$	300		
		8.7 x 10 ⁻²⁵ exp(3240/T) (1 bar)	244-295		
		2.1 x 10^{-25} exp(3625/T) (1 bar)	238-295	Wallington et al, 1996	(j)

Rate coefficient data

			1.38×10^{-24} exp(2400/T) (1 bar)	298-357	Hasson et al., 1998	(k)
$CF_3CF_2O + O_2 - products$	→ ()	1)	$\begin{array}{l} k_1[O_2] \ll k_2 \ (933) \\ mbar,air) \end{array}$	298	Tuazon and Atkinson, 1993	(e)
$CF_3CF_2O + M \rightarrow CF$ + $CF_2O + M$	⁷ 3 (2	2)				
$CH_3CF_2O + O_2 - products$	→ ()	1)	$k_1[O_2] \ll k_2$ (933 mbar, air)	298	Edney and Driscoll, 1992	(1)
$CH_3CF_2O + M - H$ $CH_3 + COF_2 + M$	→ (2)	2)	$k_1[O_2] \ll k_2$ (986 mbar, air)	298	Tuazon and Atkinson, 1993	(m)
$\begin{array}{rrr} CHFClO & + & O_2 & - \\ COFCl + HO_2 & & \end{array}$	→ ()	1)	k ₁ [O ₂] « k ₂ (986 mbar, air)	298	Tuazon and Atkinson, 1993	(n)
CHFClO + M - HCOF + Cl + M	→ (2	2)				
$CF_2ClO + O_2 - $	→ ()	1)	$k_1[O_2] \ll k_2$ (933 mbar, air)	298	Edney and Driscoll, 1992	(0)
$CF_2CIO + M - H$ $COF_2 + CI + M$	→ (2	2)	$k_2 = 7.0 \times 10^5$	298	Carr et al.,(1986); Ravez et al. (1987)	FP-UVA
			$k_2 = 3 \times 10^{13} \exp(-1)$			
$CFCl_2O + O_2 - $	→ (1)	5250/T) (k/s^{-1}) $k_1[O_2] \ll k_2$ (986 mbar air)	298	Tuazon and	(p)
$\begin{array}{l} \text{products} \\ \text{CFCl}_2\text{O} + \text{M} \\ \text{COFCl} + \text{Cl} + \text{M} \end{array}$	→ (2)	2)	$k_2 = 7.0 \text{ x } 10^5$		Lesclaux et al. (1987); Rayez et al. (1987)	FP-MS
			$k_2 = 3 \times 10^{13} \exp(-$		1 ay 62 67 al. (1967)	
$\begin{array}{c} CCl_{3}O \ + \ M \\ COCl_{2} + Cl + M \end{array} \rightarrow \\ \end{array}$	→ (2)	2)	5250/T) (k/s^{-1}) $k_2 = 8.0 \times 10^6$		Lesclaux et al. (1987); Ravez et al. (1987)	FP-MS (p)
			$k_2 = 4 \times 10^{13} \exp(-1)$		5	
$CF_2ClCH_2O + O_2 = CF_2ClCHO + HO_2$	→ (1)	4600/T) (k/s ⁻¹) k ₁ [O ₂] » k ₂ (986 mbar, air)	298	Tuazon and Atkinson, 1994	(q)
$CF_2ClCH_2O+M \rightarrow CF_2Cl+HCHO+M$	→ (2)	2)				
$CFCl_2CH_2O + O_2 \rightarrow CFCl_2CHO + HO_2$	→ (1)	$k_1[O_2] \gg k_2$ (986 mbar, air)	298	Tuazon and Atkinson, 1994	(r)
$CFCl_2CH_2O+M - CFCl_2 + HCHO + M$	→ (2)	2)				
			$k_1 = 2.0 \times 10^{-15}$	298	Mörs et al, 1996	(s)
			$k_1 = 1.3 \times 10^{-15}$	298	Wu and Carr, 1996	(t)
			$(944 \pm 55)/T]$	231-341		
$CF_3CFCIO + O_2 - products$	→ ()	1)	$k_1[O_2] \ll k_2$ (933 mbar, air)	298	Edney and Driscoll, 1992	(u)
$CF_3CFCIO + M - CF_3COF + CI + M$	→ (2	2)	$k_1[O_2] \ll k_2$ (986 mbar, air)	298	Tuazon and Atkinson, 1993	(v)
$CF_3CCl_2O + O_2 - $	→ ()	1)	$k_1[O_2] \ll k_2$ (933 mbar air)	298	Edney et al., 1991	(w)
$CF_3CCl_2O + M - H$	→ (2)	2)	$k_1[O_2] \ll k_2 (135)$ mbar, O_2)	298	Sato and Nakamura, 1991	(x)
			$k_1[O_2] \ll k_2$ (986 mbar air)	298	Tuazon and Atkinson 1993	(y)
			$k_1[O_2] \ll k_2 ~(\sim 1 \text{ bar,} air)$	298	Hayman et al., 1994	(z)

$CF_3CF_2CCl_2O + O_2$ \rightarrow products	(1)	$k_1[O_2] \ll k_2$ (135 mbar, O ₂)	298	Sato and Nakamura, 1991	(aa)
$CF_3CF_2CCl_2O+M \rightarrow CF_3CF_2COCl+Cl+M$	(2)	$k_1[O_2] \ll k_2$ (986 mbar air)	298	Tuazon and Atkinson 1994	(bb)
$CF_2ClCF_2CFClO + Or M + Or \rightarrow products (1)$	(1)	$k_1[O_2] \ll k_2 (135)$	298	Sato and Nakamura,	(cc)
$CF_2CICF_2CFCIO+M \rightarrow CF_2CICF_2COF+CI+M$	(2)	$k_1[O_2] \ll k_2$ (986 mbar air)	298	Tuazon and Atkinson 1994	(dd)
$CH_2CIO + O_2 \rightarrow HCOCI + HO_2$	(1)	$4.6 \times 10^{-18} (933 \text{ mbar})$,296	Kaiser and Wallington 1993	(ee)
$\begin{array}{rcl} \text{CH}_2\text{ClO} &+ & \text{M} & \rightarrow \\ \text{HCO} &+ & \text{HCl} &+ & \text{M} \end{array}$	(2)	$k_1 = 1.3 \times 10^{-12} \exp[-(934 \pm 128]/T)$	265-306	Wu and Carr, 2001	(ff)
		$(13 + 123)(1)^{9} k_{2} = 7.7 \times 10^{9} exp[-(4803 \pm 722]/T)$ (13 mbar)	265-306		
$CH_{3}CHClO + O_{2} \rightarrow CH_{3}COCl + HO_{2}$	(1)	$k_1[O_2] \ll k_2$ (933 mbar, air)	295	Shi et al., 1993	(gg)
$CH_{3}CHClO + M \rightarrow CH_{3}CO + HCl + M$	(2)	$k_1[O_2] \ll k_2$ (1013 mbar, air)	298	Maricq et al., 1993	(hh)
$HOCH_2CHClO+O_2 \rightarrow H$ $OCH_2COCl+HCl+HO_2$	(1)	$k_1[O_2] \ll k_2$ (986 mbar, air)	298	Tuazon and Atkinson, 1994	(ii)
HOCH ₂ CHClO+M→ CH ₂ OH+HCOCl+M	(2)			,	
HOCHCICH ₂ O+O ₂ \rightarrow HOCHCICHO+H O ₂	(1)	$k_1[O_2] \ll k_2$ (986 mbar, air)	298	Tuazon and Atkinson, 1994	(jj)
HOCHClCH ₂ O+M \rightarrow CHClOH+HCHO+M	(2)				
$CH_3CCl_2O + O_2 \rightarrow$ products (1)	(1)	$k_1[O_2] \ll k_2$ (933 mbar, O_2)	298	Nelson et al., 1990	(kk)
$CH_{3}CCl_{2}O + M \rightarrow CH_{3}COCl + Cl + M$	(2)				
$\begin{array}{rcl} CCl_{3}CH_{2}O + O_{2} & \rightarrow \\ CCl_{3}CHO + HO_{2} \end{array}$	(1)	$k_1[O_2] \ll k_2 (133)$ mbar, O_2)	298	Nelson et al., 1990	(mm)
$\begin{array}{c} \text{CCl}_3\text{CH}_2\text{O} + \text{M} \longrightarrow \\ \text{CCl}_3 + \text{HCHO} + \text{M} \end{array}$	(2)				
$CCl_3CCl_2O + O_2 \rightarrow products$	(1)	$k_1[O_2] \ll k_2$	298	Sato and Nakamura, 1991	(nn)
$\begin{array}{l} CCl_{3}CCl_{2}O + M \rightarrow \\ CCl_{3}COCl + Cl + M \end{array}$	(2)				

Comments

- (a) Steady-state photolysis of Cl_2 in the presence of CH_3 -air mixtures (1 atm) with FTIR absorption spectroscopic analysis: a 100% yield of HCOF was observed, consistent with $k_1[O_2] \gg k_{2,2}$
- (b) Steady-state photolysis of Cl_2 in the presence of CH_3CHF_3 -air mixtures (1 atm) with FTIR absorption spectroscopic analysis: a $100 \pm 5\%$ yield of COF_2 was observed, consistent with $k_1[O_2] \ll k_{2,2}$
- (c) Similar experiments to those of Comment (b); a 92.2 ± 1.2 % yield of COF₂ plus other identified products was observed, consistent with $k_1[O_2] \ll k_2$,
- (d) Steady-state photolysis of Cl_2 in the presence of CH_3FCH_2F -air mixtures (933 mbar) with FTIR analysis: a 91± 10% yield of HCOF was observed, consistent with $k_1[O_2] \ll k_2$.
- (e) Steady-state photolysis of Cl_2 in the presence of CF_3CFH_2 - O_2 - N_2 mixtures at total pressures of 2 atm with FTIR analysis of products CF_3COF and HCOF. The ratio k_1/k_2 was found to be pressure dependent over the range 27-732 mbar but approximately independent of pressure above 933

mbar.

- (f) Similar experiments to those of Comment (e) at a total pressure of 986 mbar.
- (g) Flash-photolysis time-resolved UV absorption spectroscopic study of CF₃CHFO₂
- radicals from F_2 -CF₃CH₂F-O₂-N₂ mixtures, k₁ obtained from a fit of CF₃O₂ formation profiles, produced from reaction (1) followed by CF₃ + O₂ + M. Experiments were carried out at a total pressure of 306 mbar, well below the high-pressure limit.
- (h) Cl₂- initiated photooxidation of CF₃CH₂F at 1atm pressure, with dual-beam diode-array UV spectroscopic determination of CF₃COF and HCOF products.
- (i) Direct time-resolved experiment using laser pulsed photolysis-laser long path absorption; CF₃CFHO produced by CF₃CFHO₂ + NO reaction and kinetics of thermal decomposition reaction determined at p = 50 mbar and ~ 300 K. The relative rate ratio cited for k_1/k_2 was determined in a second experiment carried out over the temperature range 244-295 K and p = 100 mbar, using UV photolysis and FTIR analysis of products.
- (j) Steady-state photolysis of Cl₂ in the presence of CF₃CFH₂-O₂-N₂ mixtures at total pressures of 55 800 mbar with FTIR analysis of products CF₃COF and HCOF. Experiments also carried out with NO present so that CF₃CFHO was produced by CF₃CFHO₂ + NO reaction, as opposed to the self reaction of CF₃CFHO₂. The ratio k_1/k_2 was found to increase with pressure over the range given but approximately independent of pressure above 1500 mbar. The ratio k_1/k_2 was significantly lower in the NO experiments. This was ascribed to the production of vibrationally hot CF₃CFHO radicals which decompose promptly to CF₃ + HCFO, in the more exothermic source reaction.
- (k) Steady-state photolysis of F_2 in the presence of CF_3CFH_2 - O_2 - N_2 mixtures (p = 910 mbar) with FTIR absorption spectroscopic analysis.
- (1) Steady-state photolysis of Cl_2 in the presence of CF_3CHF_2 -air mixtures (1 atm) with FTIR absorption spectroscopic analysis: a $109 \pm 5\%$ yield of COF_2 was observed, consistent with $k_1[O_2] \ll k_2$.
- (m) Similar experiments to those of Comment (i) at a total pressure of 986 mbar: $a \sim 100\%$ yield of COF was observed, consistent with $k_1[O_2] \ll k_2$.
- (n) Steady-state photolysis of Cl_2 in the presence of CH_2FCl -air mixtures (986 mbar) with FTIR absorption spectroscopic analyses: a 100% yield of HCOF was observed, consistent with $k_1[O_2] \ll k_2$.
- (o) Steady-state photolysis of Cl_2 in the presence of CH_2FCl -air mixtures (933 mbar) with FTIR absorption spectroscopic analysis: a $111 \pm 6\%$ yield of COF_2 was observed, consistent with $k_1[O_2]$ « k_2 . The cited absolute values for k_2 were derived from evaluation of data of Carr et al., (1986) and Rayez et al. (1987) reported in IUPAC Supplement IV, 1992.
- (p) Similar experiments to those of Comment (l) at a total pressure of 986 mbar: a 100% yield of COF₂ was observed, consistent with k₁[O₂] « k₂. The cited absolute values for k₂ were derived from evaluation of data of Lesclaux et al. (1987) and Rayez et al. (1987) reported in IUPAC Supplement IV, 1992.
- (q) Steady-state photolysis of Cl_2 in the presence of CHFCl₂-air mixtures (986 mbar) with FTIR absorption spectroscopic analyses: a 100% yield of COFCl was observed, consistent with $k_1[O_2] \ll k_2$.
- (r) Steady-state photolysis of Cl_2 in the presence of $CH_2CF_2Cl_2$ -air mixtures (986 mbar) with FTIR absorption spectroscopic analysis: a 100% yield of CF_2ClCHO was observed, consistent with $k_1[O_2] \gg k_2$ Experiments on this reaction were also carried out by Edney and Driscoll (1992) and Tuazon and Atkinson (1993).
- (s) Direct time-resolved experiment using laser pulsed photolysis-laser long path absorption; $CFCl_2CH_2O$ produced by $CFCl_2CH_2O_2$ + NO reaction.
- (t) UV flash photolysis of CFCl₂CH₃/N₂/O₂ mixtures (13- 50 mbar); growth and decay of CFCl₂CH₂O radicals in excess O₂ measured by time resolved MS.
- (u) Steady-state photolysis of Cl₂ in the presence of CH₂CFCl₂-air mixtures (986 mbar) with FTIR absorption spectroscopic analysis: a 100% yield of CFCl₂CHO was observed, consistent with

 $k_1[O_2] \gg k_2$, Experiments on this reaction were also carried out by Edney et al. (1991) and Tuazon and Atkinson (1993).

- (v) Steady-state photolysis of Cl_2 in the presence of CF₃CHFCl-air mixtures (1 atm) with FTIR absorption spectroscopic analyses: a 100 ± 4% yield of CF₃COF was observed, consistent with $k_1[O_2] \ll k_2$,
- (w) Steady-state photolysis of Cl_2 in the presence of CF_3CHFCl -air mixtures at 986 mbar total pressure with FTIR absorption spectroscopic analyses: a $101 \pm 1\%$ yield of CF_3COF was observed, consistent with $k_1[O_2] \gg k_{2,2}$
- (x) Steady-state photolysis of Cl₂ in the presence of CF₃CHCl₂-air mixtures (933 mbar) with FTIR absorption spectroscopic analyses: a ~ 100% yield of CF₃COCl was observed, consistent with $k_1[O_2] \ll k_2$.
- (y) Similar experiments to those of Comment (s) at a total pressure of 133 mbar. The observed formation of CF_3COCl is consistent with $k_1[O_2] \ll k_2$.
- (z) Similar experiments to those of Comment (s) at a total pressure of 986 mbar: a 98% yield of CF₃COCl was obseved, consistent with $k_1[O_2] \ll k_2$,
- (aa) Steady-state photolysis of Cl_2 in the presence of CF_3CHCl_2 -air mixtures (~ 1 atm) with broad-band UV absorption analyses: a ~ 100% yield of CF_3COCl was observed, consistent with $k_1[O_2] \ll k_2$.
- (bb) Steady-state photolysis of Cl_2 in the presence of $CF_3CF_2CHCl_2$ -air mixtures at 986 mbar with FTIR spectroscopic analyses: a 100% yield of CF_3CF_2COCl was observed, consistent with $k_1[O_2] \ll k_2$.
- (cc) Steady-state photolysis of Cl_2 in the presence of $CF_3ClF_2CHFCl_2-O_2$ mixtures (133 mbar) with FTIR spectroscopic analyses: observed formation of CF_2ClCF_2COF is consistent with $k_1[O_2] \ll k_2$.
- (dd) Steady-state photolysis of Cl_2 in the presence of $CF_2ClCF_2CHFCl-O_2$ mixtures (133 mbar) with FTIR spectroscopic analyses: observed formation of CF_2ClCF_2COF is consistent with $k_1[O_2] \ll k_2$.
- (ee) Steady-state photolysis of Cl₂ in the presence of CF₂ClCF₂CHFCl-air mixtures (986 mbar) with FTIR spectroscopic analysis: a 99% yield of CF₂ClCF₂COF was observed, consistent with k₁[O₂] « k₂.
- (ff) Steady-state photolysis of Cl_2 in the presence of $CH_3Cl-O_2-N_2$ mixtures with FTIR absorption spectroscopic analysis of HOCl, CO, HCl and $CH_2ClCOOH$ products. k_1/k_2 based on yields of CO and HOCl, the latter being corrected for secondary formation and removal. The ratio k_1/k_2 was found to be markedly pressure dependent over the range 12 to 933 mbar, and the cited value refers to 700 total pressure.
- (gg) UV flash photolysis time resolved MS. Pressure = 7 50 mbar; growth of HCOCl and HCl products used to determine kinetics.
- (hh) Steady-state photolysis of Cl_2 in the presence of $C_2H_2Cl-O_2-N_2$ mixture with FTIR spectroscopic analysis of products: the observed high yields of HCL (157%) and $CO_2(53\%)$ were explained by reaction (2)
- (ii) Laser flash photolysis of Cl_2 in the presence of C_2H_5Cl -air mixtures with infrared absorption detection of HCl. The observed secondary formation of HCl was explained by reaction (2).
- (jj) Steady-state photolysis of CH₃ONO or C_2H_5ONO in the presence of chloroethene -NO-air mixtures, with and without C_2H_6O as an added Cl atom scavenger. FTIR spectroscopic analysis of HCHO and HCOCl products, with close to unit yields of each. These products and their formation yields are consistent with the qualitative relative values of $k_1[O_2]$ and k_2 shown above.
- (kk) Steady-state photolysis of $CH_3CCl_3-O_2$ mixtures in the presence of Br or NO (to scavenge Cl atoms), with GC and IR analyses of products. CH_3COCl was the major product observed, consistent with the relative values of $k_1[O_2]$ and k_2 shown above.
- (ll) Steady-state photolysis of Cl_2 in the presence of $CH_3CCl_3-O_2$ mixtures with GC and IR analyses of CCl_3CHO and $COCl_2$, which are consistent with the relative values of $k_1[O_2]$ and k_2 shown above.
- (mm) Steady-state photolysis of Cl_2 in the presence of $CHCl_2CCl_3$ -O₂ mixtures (133 mbar) with FTIR spectroscopic analysis. The observed formation yields of CCl_3COCl and $COCl_2$ are consistent with the relative values of $k_1[O_2]$ and k_2 shown above.

Preferred Values

R₁ (R₂)CHO = CF₃CHFO $k_1/k_2 = 2.7 \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1}$ at 298 K and 1 atm pressure. $k_1/k_2 = 2.1 \times 10^{-25} \exp(3625/\text{T})$ (1 bar) cm³ molecule⁻¹ over the temperature range 260-355 K. Δ(*E/R*) = ±500 K.

 $R_1 (R_2)CHO = CH_2CIO$ $k_1/k_2 = 4.6 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ at } 298 \text{ K}$.

Comments on Preferred Values

 $R_1 (R_2)CHO = CF_3CHFO$

The recommended temperature dependence rate coefficient ratio is that evaluated by Wallington et al (1996) from their own data together with those of Wallington et al. (1992), Tuazon and Atkinson (1994), Meller et al. (1992), and Benarek et al. (1996). The data were corrected for a small pressure dependence measured by Wallington at al. (1996) at 298 K, and the expression refers to reactions of the thermalised CF₃CHFO radicals. This study also revealed that energy rich CF₃CHFO radicals were formed when the radical was produced from the CF₃CHFO₂ + NO reaction, leading to formation of HCFO by prompt decomposition at atmospheric temperatures, reducing the relative rate of O₂ reaction by a factor of 1.8 - 4.0. Several theoretical studies have investigated the decomposition of CF₃CHFO radicals and have confirmed that this interpretation is realistic. (Schneider et al., 1998; Somnitz and Zellner, 2001).

$R_1 (R_2)CHO = CH_2CIO, CH_3CHCIO$

The elimination of HCl occurs from the CH₃CHClO radical (Shi et al., 1993, Maricq et al., 1993) as well as from the CH₂ClO radical (Kaiser and Wallington, 1994; Wu and Carr, 2001).

 R_1 (R_2)CHO = other radicals in the above table.

For the purpose of atmospheric modeling studies it is recommended that the above qualitative information on the ratios k_1/k_2 be used to decide if one or other of the alkoxy radical reaction pathways predominates or if both pathways should be considered.

References

Bednarek, G., Breil, M., Hoffmann, A., Kohlmann, J. P., Mörs, V., and Zellner, R.: Ber. Bunsenges. Phys. Chem. 100, 528, 1996

Edney, E. O. and Driscoll, D. J.: Int . J. Chem. Kinet. 24, 1067, 1992.

Edney, E. O., Gay, B. W. and Driscoll, D.J.: J. Atmos. Chem. 12, 105, 1991.

Hasson, A. S., Moore, C. M. and Smith I. W. M.: J. Chem. Soc. Faraday Trans. 93, 2693, 1997.

Hasson, A. S., Moore, C. M. and Smith I. W. M.: Int. J. Chem. Kinet. 30, 541, 1998.

Hayman, G. D., Jenkin, M. E., Murrells, T. P. and Johnson, C. E.: Atmos. Environ. 28A, 421, 1994. Kaiser, E. W. and Wallington, T. J.: J. Phys. Chem. 98, 5679, 1994.

Maricq, M. M., Shi, J., Szente, J. J., Rimai, L. and Kaiser, E. W.: J. Phys. Chem. 97, 9686, 1993.

Mörs, V., Hoffmann, A., Malms, W. and Zellner, R.: Ber. Bunsenges. Phys. Chem. 100, 540, 1996.

Nelson, L., Shanahan, I., Sidebottom, H. W., Treacy, J. and Nielsen, O. J.: Int. J. Chem. Kinet. 21, 111, 1990.

Rattigan, O. V., Rowley, D. M., Wild, O., Jones, R. L. and Cox, R. A.: J. Chem. Soc. Faraday Trans. 90, 1819, 1994.

Sato, H. and Nakamura, T.: J. Chem. Soc, Jpn. 5, 548, 1991.

Schneider, W. F., Wallington, T. J., Barker, J. R. and Stahlberg, E. A.: Ber.Bunsenges.Phys.Chem. 102, 1850, 1998.

Shi, J., Wallington, T. J. and Kaiser, E. W.: J. Phys. Chem. 97, 6184, 1993.

Somnitz, H. and Zellner, R.: Phys. Chem. Chem. Phys. 3, 2352, 2001.

Tuazon, E. C., Atkinson, R., Aschmann, S. M., Goodman, M. A. and Winer, A.M.: Int. J. Chem. Kinet. 20, 241, 1988.

Tuazon, E. C. and Atkinson, R.: J. Atmos. Chem. 16, 301, 1993.

Tuazon, E. C. and Atkinson, R.: J. Atmos. Chem. 17, 179, 1993.

Wallington, T. J., Hurley, M. D., Ball, J. C. and Kaiser, E. W.: Environ.Sci. Technol. 26, 1318, 1992.

Wallington, T. J., Hurley, M. D., Ball, J. C., Ellermann, T., Nielsen, O. J. and Sehested, J.: J. Phys. Chem. 98, 5435, 1994.

Wallington, T. J., Hurley, M. D., Fracheboud, J. M., Orlando, J. J., Tyndall, G. S., Møgelburg, T. E.,

Sehested, J. and Nielsen, O. J.: J. Phys. Chem. 100, 18116, 1996.

Wu, F and Carr, R. W.: J. Phys. Chem. A 100, 9352, 1996.

Wu, F and Carr, R. W.: J. Phys. Chem. A 105, 1423, 2001.