IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet II.A5.111 RO_12

Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. The citation for this datasheet is: IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, http://iupac.pole-ether.fr.

This data sheet last evaluated: 4th June 2009. Last change in preferred values: 12th June 2003.

$C_2H_5O + NO + M \rightarrow C_2H_5ONO + M$	(1)
$C_2H_5O + NO \rightarrow CH_3CHO + HNO$	(2)

 $\Delta H^{\circ}(1) = -178.5 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H^{\circ}(2) = -127.6 \text{ kJ} \cdot \text{mol}^{-1}$

Low-pressure rate coefficients Rate coefficient data

k_{01} /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients (2.2 ± 1.2) x 10 ⁻²⁸ [He]	298	Daële <i>et al.</i> , 1995 ¹	DF/LIF&MS (a)

Comments

(a) C₂H₅O radicals were generated by the reaction of F atoms with C₂H₅OH. Measurements were carried out at 0.7 mbar, 1.3 mbar and 2.6 mbar. The rate coefficient k_{01} was obtained from a Lindemann-Hinshelwood analysis, assuming identical intermediates in reactions (1) and (2); $k_2 = (1.1 \pm 0.5) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ was derived.

Preferred Values

 $k_{01} = 2.2 \ge 10^{-28} [N_2] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K.}$ $k_2 = 1.1 \ge 10^{-11} [N_2] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K.}$

Reliability

 $\Delta \log k_{01} = \pm 0.3$ at 298 K. $\Delta \log k_2 = \pm 0.5$ at 298 K.

Comments on Preferred Values

The preferred values are from Daële *et al.*,¹ assuming that reactions (1) and (2) can be separated by Lindemann-Hinshelwood extrapolation and $k = k_1([M]) + k_2$. We assume equal values of k_{01} for He and N₂ as third bodies. In contrast to the simple Lindemann-Hinshelwood evaluation of ref. 1 corresponding to $F_c = 1$, we recommend to use $F_c = 0.6$ for a construction of the falloff curve for $k_1([M])$.

High-pressure rate coefficients Rate coefficient data

$k_{\infty 1}$ /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients (4.4 ± 0.4) x 10^{-11} (3.1 ± 0.8) x 10^{-11} (3.7 ± 0.7) x 10^{-11} ($T/300$) ^{0.2}	298 298 286-388	Frost and Smith, 1990 ² Daële <i>et al.</i> , 1995 ¹ Fittschen <i>et al.</i> , 1999 ³	PLP-LIF (a) DF/LIF&MS (b) PLP-LIF (c)

Comments

- (a) The rate coefficient k_1 is found not to depend on the pressure between 20 mbar and 130 mbar of Ar.
- (b) See comment (a) for k_0 .
- (c) Measurements over the range 39-658 mbar of He. Results assumed to be in the high pressure range. Values taken from table of results, not abstract.

Preferred Values

 $k_{\infty 1} = 4.4 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ over the temperature range 200 to 400 K.

Reliability

 $\Delta \log k_{\infty 1} = \pm 0.3$ at 298 K. $\Delta n = \pm 0.5$.

Comments on Preferred Values

The preferred value of $k_{\infty 1}$ is from ref. 2 in close agreement with ref. 3. For the falloff curve of reaction (1), $F_c = 0.6$ is chosen. The value of k_2 derived in ref. 1 with the preferred $k_{\infty 1}$ is in good agreement with the ratio $k_2/k_{\infty 1} = 0.3$ observed in ref. 4.

References

- ¹ V. Daële, A. Ray, I. Vassalli, G. Poulet, and G. LeBras, Int. J. Chem. Kinet. 27, 1121 (1995).
- ² M. J. Frost and I. W. M. Smith, J. Chem. Soc. Faraday Trans 86, 1757 (1990).
- ³ C. Fittschen, A. Frenzel, K. Imrik, and P. Devolder, Int. J. Chem. Kinet. **31**, 800 (1999).
- ⁴ G. Baker and R. Shaw, J. Chem. Soc. A, 6965 (1965).