IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet II.A6.120 ROO_1

Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. The citation for this data sheet is: Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J., Atmos. Chem. Phys., 3625-4055, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (http://iupac.pole-ether.fr).

This data sheet last evaluated: June 2013; last change in preferred values: July 2005.

$\begin{array}{ll} CH_3O_2 + NO \rightarrow CH_3O + NO_2 & (1) \\ CH_3O_2 + NO + M \rightarrow CH_3ONO_2 + M & (2) \end{array}$

 $\Delta H^{\circ}(1) = -48.8 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H^{\circ}(2) = -218.3 \text{ kJ} \cdot \text{mol}^{-1}$

Absolute Rate Coefficients $(8.0 \pm 2.0) \ge 10^{-12}$ 295Plumb et al., 1979DF-MS (a) $(3.0 \pm 1.7) \ge 10^{-12}$ 298Adachi and Basco, 1979FP-AS $(7.1 \pm 1.4) \ge 10^{-12}$ 298Sander and Watson, 1980FP-AS (b) $(6.5 \pm 2.0) \ge 10^{-12}$ 298Cox and Tyndall, 1979 / 1980MMS-AS (c) $(8.1 \pm 1.6) \ge 10^{-12}$ 240-339Ravishankara et al., 1981LP-LIF (d) $2.1 \ge 10^{-12} \exp[(380 \pm 250)/T]$ 218-365Simonaitis and Heicklen, 1981FP-AS (e)
$(8.0 \pm 2.0) \ge 10^{-12}$ 295Plumb et al., 1979DF-MS (a) $(3.0 \pm 1.7) \ge 10^{-12}$ 298Adachi and Basco, 1979FP-AS $(7.1 \pm 1.4) \ge 10^{-12}$ 298Sander and Watson, 1980FP-AS (b) $(6.5 \pm 2.0) \ge 10^{-12}$ 298Cox and Tyndall, 1979 / 1980MMS-AS (c) $(8.1 \pm 1.6) \ge 10^{-12}$ 240-339Ravishankara et al., 1981LP-LIF (d) $2.1 \ge 10^{-12} \exp[(380 \pm 250)/T]$ 218-365Simonaitis and Heicklen, 1981FP-AS (e)
$(3.0 \pm 1.7) \ge 10^{-12}$ 298Adachi and Basco, 1979FP-AS $(7.1 \pm 1.4) \ge 10^{-12}$ 298Sander and Watson, 1980FP-AS (b) $(6.5 \pm 2.0) \ge 10^{-12}$ 298Cox and Tyndall, 1979 / 1980MMS-AS (c) $(8.1 \pm 1.6) \ge 10^{-12}$ 240-339Ravishankara et al., 1981LP-LIF (d) $2.1 \ge 10^{-12} \exp[(380 \pm 250)/T]$ 218-365Simonaitis and Heicklen, 1981FP-AS (e)
$(7.1 \pm 1.4) \ge 10^{-12}$ 298Sander and Watson, 1980FP-AS (b) $(6.5 \pm 2.0) \ge 10^{-12}$ 298Cox and Tyndall, 1979 / 1980MMS-AS (c) $(8.1 \pm 1.6) \ge 10^{-12}$ 240-339Ravishankara et al., 1981LP-LIF (d) $2.1 \ge 10^{-12} \exp[(380 \pm 250)/T]$ 218-365Simonaitis and Heicklen, 1981FP-AS (e)
$(6.5 \pm 2.0) \ge 10^{-12}$ 298Cox and Tyndall, 1979 / 1980MMS-AS (c) $(8.1 \pm 1.6) \ge 10^{-12}$ 240-339Ravishankara et al., 1981LP-LIF (d) $2.1 \ge 10^{-12} \exp[(380 \pm 250)/T]$ 218-365Simonaitis and Heicklen, 1981FP-AS (e)
$(8.1 \pm 1.6) \ge 10^{-12}$ 240-339Ravishankara et al., 1981LP-LIF (d) $2.1 \ge 10^{-12} \exp[(380 \pm 250)/T]$ 218-365Simonaitis and Heicklen, 1981FP-AS (e)
2.1 x $10^{-12} \exp[(380 \pm 250)/T]$ 218-365 Simonaitis and Heicklen, 1981 FP-AS (e)
$(7.7 \pm 0.9) \ge 10^{-12}$ 298
$(8.6 \pm 2.0) \times 10^{-12}$ 295 Plumb et al., 1981 DF-MS (f)
$(7 \pm 2) \ge 10^{-12}$ 298 Zellner et al., 1986 LP-AS (g)
$(8.8 \pm 1.4) \times 10^{-12}$ 295 Sehested et al., 1993 PR-UV (h)
$(11.2 \pm 1.4) \times 10^{-12}$ 298 Masaki et al., 1994 LP-MS (i)
$2.8 \times 10^{-12} \exp[(285 \pm 60)/T]$ 199-429 Villalta et al., 1995 F-CIMS (j)
$(7.5 \pm 1.3) \ge 10^{-12}$ 298
$(7.5 \pm 1.0) \times 10^{-12}$ 298 Helleis et al., 1996 DF-MS (k)
9.2 x $10^{-13} \exp[(600 \pm 140)/T]$ 203-295 Scholtens et al., 1999 F-CIMS (1)
$(7.8 \pm 2.2) \ge 10^{-12}$ 298
$1.75 \times 10^{-12} \exp[(435 \pm 35)/T]$ 193-300 Bacak et al., 2004 F-CIMS (m)
$(7.42 \pm 0.27) \times 10^{-12}$ 298
$(9.9 \pm 2.1) \times 10^{-12}$ 298 Xing et al., 2004 LP-MS (n)
Branching ratios
$\kappa_2/\kappa < 0.003 (100 \text{ forr})$ 295 Scholtens et al., 1999 F-CIMS (I)
k_2/k 0.0039 ± 0.0011 (100 forr) 298 Butkovskaya et al., 2012 DF-CIMS (o)
k_2/k (P) see below 223-298

Rate coefficient data ($k = k_1 + k_2$)

Comments

- (a) Flow tube at 11 ± 2.6 mbar He. Direct detection of CH_3O_2 (generated in $O + C_2H_4 + O_2$) via electron impact mass spectrometry.
- (b) Data obtained at 100, 467 and 933 mbar He, and 933 mbar N_2 . CH_3O_2 formed by $Cl + CH_4 + O_2$.
- (c) Data obtained at 720 mbar N_2 / O_2 . CH₃O₂ formed by Cl + CH₄ + O₂.
- (d) CH₃O₂ generated by photolysis of CH₃N₂CH₃ in presence of O₂. Rate data obtained via LIF detection of NO₂.
- (e) Pressures of 93 to 800 mbar CH_4 . CH_3O_2 formed by $Cl + CH_4 + O_2$.
- (f) Flow tube at 7.7 mbar He, direct detection of CH₃O₂ (generated in Cl + CH₄ + O₂) via electron impact mass spectrometry.
- (g) Experiments conducted at 13.3 mbar He or N₂. CH₃O₂ generated by photolysis of CH₃N₂CH₃ in presence of O₂. Rate data obtained by measuring CH₃O₂ by absorption spectroscopy, LIF used to observe formation of CH₃O.
- (h) Experiments conducted in 1013 mbar SF_6/O_2 . CH_3O_2 generated in $F + CH_4$ (+ O_2) and NO_2 formation monitored to derive kinetic information.
- (i) Experiments conducted in 4–8 mbar N_2/O_2 . Mass spectrometry using photo-ionisation detection of CH_3O_2 , which was formed in the 193 nm photo-dissociation of acetone in the presence of O_2 .
- (j) Experiments conducted in 2.7- 7.3 mbar He. CH_3O_2 generated by thermal decomposition of CH_3CH_2ONO in the presence of O_2 . Mass spectrometry using chemi-ionisation detection of CH_3^+ generated in $O_2^+ + CH_3O_2$.
- (k) Experiments conducted in 2.3 mbar He, CH_3O_2 generated in F + CH_4 (+ O_2). Electron impact detection of CH_3O_2 in excess NO. Measurements using deuterated methyl peroxy gave $k(CD_3O_2 + NO) = (8.6 \pm 1.0) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$
- (1) Turbulent flow reactor at 133 mbar N_2 total pressure. CH_3O_2 generated in $F + CH_4$ (+O₂) and detected as $CH_3OOH^+(H_2O)_n$ following proton transfer from H_3O^+ .
- (m) Turbulent flow reactor at 133 or 266 mbar N₂ total pressure. CH_3O_2 generated in F + CH_4 (+O₂) and detected as FO₂⁻ following reaction with SF_6^- . Yield of NO₂ was found to be 1 ± 0.1 at 298 K.
- (n) CH₃O₂ generated by reaction of CH₃ with O₂, whereby CH₃ radicals were generated in the 193 nm photolysis of CH₃C(O)CH₃, or the 248 nm photolysis of CH₃I. The data obtained using CH₃I are reported to be more reliable. CH₃O₂ was detected as the negative parent ion following electron transfer from high Rydberg state rare gas atoms. The bath gas was 5.3 mbar (He) and 2.7 mbar O₂.
- (o) Turbulent flow reactor operated at pressures between 50 and 500 Torr N₂ at 298 K and at temperatures between 223 and 298 K at 100 or 200 Torr N₂. CH₃O₂ was generated in the reaction of CH₃ (from F + CH₄) with O₂. CH₃ONO₂ was detected following H⁺ or D⁺ transfer from H₃O⁺(H₂O)_n or D₃O⁺ (D₂O)_n. Branching ratios to CH₃ONO₂ formation were calculated from formation rates of CH₃ONO₂ relative to HCHO and/or CH₃ONO which are the end products from further reactions of CH₃O (channel 1) with O₂ and NO.

Preferred Values

 $k = 7.7 \text{ x } 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

 $k = 2.3 \times 10^{-12} \exp(360/T) \text{ cm}^3$ molecule⁻¹ s⁻¹ over the temperature range 200 K to 430 K.

Reliability $\Delta \log k = \pm 0.05 \text{ at } 298 \text{ K.}$ $\Delta (E/R) = \pm 100 \text{ K.}$

Preferred Values

Parameter	Value	T/K	
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	7.7 x 10 ⁻¹² 2.3 x 10 ⁻¹² exp(360/ <i>T</i>)	298 200-430	
Reliability $\Delta \log k$ $\Delta(E/R)$	$egin{array}{ll} \pm 0.05 \ \pm 100 \end{array}$	298 200-500	

Comments on Preferred Values

This reaction has been subject of intensive investigation using several different experimental techniques. With the exception of the data of Adachi and Basco (1979), Masaki et al. (1994) and Xing et al. (2004), the remaining eleven datasets at room temperature are in good agreement. The recommended value of the rate coefficient at 298 K is the average of the results from Scholtens et al. (1999), Helleis et al. (1996), Villalta et al. (1995), Ravishankara et al. (1981) and Bacak et al. (2004). The temperature dependence of the rate coefficient is described by four sets of data which are in good agreement at temperatures above 230 K. At lower temperatures there is some deviation, with the datasets of Scholtens et al. (1999) and Simonaitis and Heicklen (1981) deviating from Arrhenius behaviour. These data sets were obtained at higher pressures than that of Villalta et al. (1995) and the possibility of a pressure dependence in the rate coefficient at low temperatures has been discussed (Scholtens et al., 1999). The latest data on this reaction (Bacak et al., 2004) do not, however, support this.

The datasets of Villalta et al. (1999) and Bacak et al. (2004) which cover the largest temperature range, provide the basis of the recommended temperature dependence, which has been adjusted for the average 298 K rate coefficient.

The CH₃O and NO₂ products of channel (1) are formed at yields close to unity (Ravishankara et al., 1981; Zellner et al., 1986; Bacak et al., 2004). Butkovskaya et al. (2012) measured CH₃ONO₂ yields ($\beta = k_2/k$) between 0.0033 and 0.016, which were largest at high pressures and low temperatures, consistent with CH₃ONO₂ formation in a termolecular reaction. Their yield of 0.0039 ± 0.0011 at 100 Torr N₂ and 295 K is consistent with the upper limit of 0.03 determined by Scholtens et al. (1999). Butkovskaya et al. did not provide a parameterisation of their branching ratios but a simple expression, $\beta(T,P) = \beta_0 \beta_{\infty}/(\beta_0 + \beta_{\infty})$, with (β_{∞}) = 0.022 and $\beta_0 = 0.00295 + 5.15 \times 10^{-22*} \text{M*}(\text{T/298})^{7.4}$ adequately reproduces their dataset. Further data is necessary to confirm the formation of CH₃ONO₂ at these yields, identify the origin of an apparent non-zero CH₃ONO₂ yield at zero pressure and to derive the pressure dependence at low temperatures to enable more detailed fall-off expressions to be used. Finally, we note that the branching ratios measured by Butkovskaya et al. (2012) at low temperature and pressure are at least an order of magnitude larger than those derived from field-observations in the lower stratosphere (Flocke et al., 1998) or theory (Barker et al., 2003).

References

Adachi, H. and Basco, N.: Chem. Phys. Lett. 63, 490, 1979.

Bacak, A., Bardwell, M. W., Raventos, M. T., Percival, C. J., Sanchez-Reyna, G., Shallcross, D. E.: J. Phys. Chem. A 108, 10681, 2004.

Barker, J. R., Lohr, L. L., Shroll, R. M., and Reading, S., J. Phys. Chem. A, 107, 7434-7444, 2003.

Butkovskaya, N., Kukui, A., and Le Bras, G., J. Phys. Chem. A, 116, 5972-5980, 2012.

Cox, R. A. and Tyndall, G. S.: Chem. Phys. Lett. 65, 357, 1979; J. Chem. Soc. Faraday Trans. 2, 76, 153, 1980.

Flocke, F., Atlas, E., Madronich, S., Schauffler, S. M., Aikin, K., Margitan, J. J., and Bui, T. P., Geophys. Res. Lett., 25, 1891, 1998.

Helleis, F., Moortgat, G. K. and Crowley, J. N.: J. Phys. Chem. 100, 17846, 1996.

Masaki, A., Tsunashima, S. and Washida, N.: Chem. Phys. Lett. 218, 523, 1994.

Plumb, I. C., Ryan, K. R., Steven, J. R. and Mulcahy, M. F. R.: Chem. Phys. Lett. 63, 255, 1979.

Plumb, I. C., Ryan, K. R., Steven, J. R. and Mulcahy, M. F. R.: J. Phys. Chem. 85, 3136, 1981.

Ravishankara, A. R., Eisele, F. L., Kreutter, N. M. and Wine, P. H.: J. Chem. Phys. 74, 2267, 1981.

Sander, S. P. and Watson, R. T.: J. Phys. Chem. 84, 1664, 1980.

Scholtens, K. W., Messer, B. M., Cappa, C. D. and Elrod, M. J.: J. Phys. Chem. 103, 4378, 1999.

Sehested, J., Nielsen, O. J. and Wallington, T. J.: Chem. Phys. Lett. 213, 457, 1993.

Simonaitis, R. and Heicklen, J.: J. Phys. Chem. 85, 2946, 1981.

Villalta, P. W., Huey, L. G. and Howard, C. J.: J. Phys. Chem. 99, 12829, 1995.

Xing, J.-H., Nagai, Y., Kusuhara, M. and Miyoshi, A.: J. Phys. Chem. A 108, 10458, 2004.

Zellner, R., Fritz, B. and Lorenz, K.: J. Atmos. Chem. 4, 241, 1986.

Temperature dependence of k. Solid line represents the IUPAC preferred values

Pressure dependence of β at 298 K (red data points). The solid line is from the parameterisation above. The temperature dependence, colour coded from 223 (blue) to 298 K (red) was investigated at 100, 150 and 200 Torr N₂.

Teemperature dependence of β at 100 Torr (red data points) and 200 Torr (blue data points). The solid line represents the parameterised branching ratio using the expression above and the low- and high-pressure limiting values given in the text.