IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation: halogenated peroxy radical + NO (+M) reactions

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet updated: 12th July 2006.

$RO_2 + NO \rightarrow RO + NO_2$ (1) $RO_2 + NO + M \rightarrow RONO_2 + M$ (2)

(R = CH₂F, CHF₂, CF₃, CH₂FCHF, CHF₂CF₂, CF₃CHF, CF₃CF₂, CHFCl, CF₂Cl, CFCl₂, CH₃CFCl, CF₂ClCH₂, CFCl₂CH₂, CF₃CCl₂, CH₂ClCH₂, CH₂Cl, CCl₃, CH₂Br, CHBr₂)

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$R = CH_2F$			
$(1.25 \pm 0.13) \ge 10^{-11}$	295	Sehested et al., 1993	PR-AS (a)
$R = CHF_2$			
$(1.26 \pm 0.16) \ge 10^{-11}$	295	Sehested et al., 1993	PR-AS (a)
$R = CF_3$			
$(1.78 \pm 0.36) \ge 10^{-11}$	295	Plumb and Ryan, 1982	DF-MS (b)
$1.45 \ge 10^{-11} (T/298)^{-(1.2 \pm 0.2)}$	230-430	Dognon et al., 1985	PLP-MS (c)
$(1.45 \pm 0.2) \ge 10^{-11}$	298		
$(1.53 \pm 0.30) \ge 10^{-11}$	290	Peeters et al., 1992	DF-MS (d)
$(1.68 \pm 0.26) \ge 10^{-11}$	295	Sehested and Nielsen, 1993	PR-AS (a)
$(1.53 \pm 0.20) \ge 10^{-11}$	297	Bevilacqua et al., 1993	F-CIMS (e)
$(1.57 \pm 0.38) \ge 10^{-11}$	298	Turnipseed et al., 1994	PLP-LIF (f)
$(1.57 \pm 0.31) \ge 10^{-11}$	293	Bhatnagar and Carr, 1994	FP-MS (g)
$(1.76 \pm 0.35) \ge 10^{-11}$	298	Bourbon et al., 1996	DF-LIF (h)
$(1.6 \pm 0.3) \ge 10^{-11}$	298	Louis et al., 1999	DF-MS (i)
$R = CH_2FCHF$			
>8.7 x 10 ⁻¹²	296	Wallington et al., 1994	PR-AS (a)
$R = CHF_2CF_2$			
$>(9.7 \pm 1.3) \times 10^{-12}$	295	Sehested et al., 1993	PR-AS (a)
$R = CF_3CHF$			
$(1.28 \pm 0.36) \ge 10^{-11}$	298	Wallington and Nielsen, 1991	PR-AS (a)
$(1.31 \pm 0.30) \ge 10^{-11}$	324	Bhatnagar and Carr, 1995	FP-MS (j)
$R = CF_3CF_2$			
$>(1.07 \pm 0.15) \times 10^{-11}$	295	Sehested et al., 1993	PR-AS (a)
R = CHFC1			
$(1.31 \pm 0.20) \ge 10^{-11}$	299	Bhatnagar and Carr, 1996	FP-MS (k)
$R = CF_2Cl$			
$1.6 \ge 10^{-11} (T/298)^{-(1.5 \pm 0.4)}$	230-430	Dognon et al., 1985	PLP-MS (c)
$(1.6 \pm 0.3) \ge 10^{-11}$	298		
$(1.31 \pm 0.12) \ge 10^{-11}$	295	Sehested et al., 1993	PR-AS (a)
$R = CFCl_2$			
$(1.6 \pm 0.2) \ge 10^{-11}$	298	Lesclaux and Caralp, 1984	PLP-MS (l)
$1.45 \ge 10^{-11} (T/298)^{-(1.3 \pm 0.2)}$	230-430	Dognon et al., 1985	PLP-MS (c)

Rate coefficient data ($k = k_1 + k_2$)

$(1.45 \pm 0.2) \ge 10^{-11}$	298		
$R = CH_3CFCl$			
$2.0 \ge 10^{-11} (T/300)^{-(1.8 \pm 0.3)}$	263-321	Wu and Carr, 1996	FP-MS (m)
1.9 x 10 ⁻¹¹	298		
$R = CF_2ClCH_2$			
$(1.18 \pm 0.10) \ge 10^{-11}$	295	Sehested et al., 1993	PR-AS (a)
$R = CFCl_2CH_2$			
$(1.28 \pm 0.11) \ge 10^{-11}$	295	Sehested et al., 1993	PR-AS (a)
$1.3 \times 10^{-11} (T/300)^{-(1.5 \pm 0.2)}$	263-321	Wu and Carr, 1996	FP-MS (m)
1.25 x 10 ⁻¹¹	298		
$\mathbf{R} = \mathbf{CF}_3 \mathbf{CCl}_2$			
$(1.5 - 2.0) \ge 10^{-11}$	298	Hayman et al., 1994	PLP-AS (n)
$R = CH_2ClCH_2$			
$(9.7 \pm 1.2) \ge 10^{-12}$	298	Patchen et al. (2005)	F-CIMS (o)
$R = CH_2Cl$			
$(1.87 \pm 0.20) \ge 10^{-11}$	295	Sehested et al., 1993	PR-AS (a)
$R = CCl_3$			
$(1.86 \pm 0.28) \ge 10^{-11}$	295	Ryan and Plumb, 1984	DF-MS (p)
$1.7 \ge 10^{-11} (T/298)^{-(1.0 \pm 0.2)}$	230-430	Dognon et al., 1985	PLP-MS (c)
$(1.7 \pm 0.2) \ge 10^{-11}$	298		
$R = CH_2Br$			
$(1.07 \pm 0.11) \ge 10^{-11}$	295	Sehested et al., 1993	PR-AS (a)
$R = CHBr_2$			
$(1.74 \pm 0.16) \ge 10^{-11}$	296	Bayes et al., 2005	PLP-RF (q)
Branching Ratios			
$R = CF_3$			
$k_2/k = (0.0167 \pm 0.0027)$	295	Nishida et al., 2004	P-FTIR (r)
· · · · · · · · · · · · · · · · · · ·		*	~ /

Comments

- (a) k determined from $+d[NO_2]/dt$ at a total pressure of 1 bar.
- (b) k was independent of pressure over the range 2.5-6.8 mbar.
- (c) No significant pressure dependence in k over the range 1.3-13 mbar was observed.
- (d) Fast-flow system with molecular beam sampling MS at a total pressure of 2.7 mbar. k was derived from decay of CF₃O₂ and appearance of NO₂.
- (e) k determined from decay of CF_3O_2 in the presence of NO; pressure range 1.1-2.7 mbar.
- (f) Photolysis of CF₃Br in the presence of O_2 and NO at 93 mbar total pressure. *k* was obtained by fitting the measured CF₃O radical temporal profile, with formation through CF₃O₂ + NO and loss through CF₃O + NO.
- (g) Photolysis of $(CF_3CO)_2O$ in the presence of O_2 , N_2 and NO at 2.7-40 mbar total pressure. k obtained from the kinetics of CF_3O_2 removal and CF_3O formation. k was independent of pressure in the studied range.
- (h) CF_3O_2 generated from F + CHF₃ reaction, with *k* determined from the formation kinetics of CF_3O when NO added; pressure range 1.1-4.0 mbar.
- (i) CF_3O_2 generated from F + CHF₃ reaction, with *k* determined from the removal kinetics of CF_3O_2 when NO added; pressure range 0.9-4.0 mbar.
- (j) Photolysis of Cl_2 in the presence of CF_3CH_2F , O_2 , N_2 and NO at 16-33 mbar total pressure. *k* was obtained from the formation kinetics of NO₂. *k* was independent of pressure in the studied range.
- (k) Photolysis of Cl_2 in the presence of CH_2FCl , O_2 , N_2 and NO at 8-33 mbar total pressure. *k* was obtained from the formation kinetics of NO₂. *k* was independent of pressure in the studied range.

- (1) Measurements were made at 2.7 mbar total pressure.
- (m) Photolysis of CH₃CFCl₂ in the presence of O₂, N₂ and NO at 11-27 mbar total pressure. k for both CH₃CFClO₂ and CFCl₂CH₂O₂ were extracted simultaneously from the removal kinetics of NO and formation kinetics of CFCl₂CH₂O. k was independent of pressure in the studied range.
- (n) k derived from computer fit of transient absorption traces based on a mechanism of 9 reactions. Experiments performed at 1 bar pressure.
- (o) CH₂ClCH₂O₂ generated from the C₂H₄ + Cl reaction, with *k* determined from pseudo-first order decay CH₂ClCH₂O₂ in the presence of NO. Measurements made at 130 mbar pressure.
- (p) k independent of pressure over the range 2.3-7.2 mbar.
- (q) Photolysis of CHBr₃ in the presence of O_2 and NO at 2.7-13 mbar. *k* was obtained from the formation kinetics of secondary Br atoms, generated from the prompt decomposition of CHBr₂O. *k* was independent of pressure in the studied range.
- (r) CF₃O₂ generated from the UV photolysis of CF₃N₂CF₃ in excess NO, N₂ and O₂ at 930 mbar. Branching ratio determined from the relative yields of CF₃ONO₂ and COF₂.

Preferred Values

```
R = CH_2F

k = 1.3 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K.}

\Delta \log k = \pm 0.3 \text{ at } 298 \text{ K.}
```

 $R = CHF_2$

 $k = 1.3 \text{ x} 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $\Delta \log k = \pm 0.3 \text{ at } 298 \text{ K}.$

 $R = CF_3$

 $k = 1.6 \ge 10^{-11} (T/298)^{-1.2} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range 230-430 K.}$ $\Delta \log k = \pm 0.1 \text{ at } 298 \text{ K.}$ $\Delta n = \pm 0.5.$

 $R = CH_2FCHF$

 $k > 9 \ge 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

 $R = CHF_2CF_2$

 $k > 1 \ge 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

R = CF₃CHF $k = 1.3 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $\Delta \log k = \pm 0.2 \text{ at } 298 \text{ K}.$

 $R = CF_3CF_2$ $k > 1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$

R = CHFCl $k = 1.3 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K.}$ $\Delta \log k = \pm 0.3 \text{ at } 298 \text{ K.}$

R = CF₂Cl $k = 1.5 \times 10^{-11} (T/298)^{-1.5} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range 230-430 K.}$ $\Delta \log k = \pm 0.2 \text{ at } 298 \text{ K.}$ $\Delta n = \pm 0.5.$ $R = CFCl_2$ $k = 1.5 \times 10^{-11} (T/298)^{-1.3} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 230-430 \text{ K}.$ $\Delta \log k = \pm 0.2$ at 298 K. $\Delta n = \pm 0.5$. $R = CH_3CFC1$ $k = 2.0 \times 10^{-11} (T/298)^{-1.8} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range 260-320 K}.$ $\Delta \log k = \pm 0.3$ at 298 K. $\Delta n = \pm 0.5$. $R = CF_2ClCH_2$ $k = 1.2 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $\Delta \log k = \pm 0.3$ at 298 K. $R = CFCl_2CH_2$ $k = 1.3 \times 10^{-11} (T/298)^{-1.5} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range 260-320 K}.$ $\Delta \log k = \pm 0.2$ at 298 K. $\Delta n = \pm 0.5$. $R = CF_3CCl_2$ $k = 1.8 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $\Delta \log k = \pm 0.3$ at 298 K. $R = CH_2ClCH_2$ $k = 9.7 \text{ x } 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $\Delta \log k = \pm 0.3$ at 298 K. $R = CH_2Cl$ $k = 1.9 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $\Delta \log k = \pm 0.3$ at 298 K. $R = CCl_3$ $k = 1.8 \times 10^{-11} (T/298)^{-1.0} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ over the temperature range } 230-430 \text{ K}.$ $\Delta \log k = \pm 0.2$ at 298 K. $\Delta n = \pm 0.5$. $R = CH_2Br$ $k = 1.1 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $\Delta \log k = \pm 0.3$ at 298 K. $R = CHBr_2$ $k = 1.7 \text{ x } 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $\Delta \log k = \pm 0.3$ at 298 K.

Comments on Preferred Values

R = CH₂F, CHF₂, CHF₂CF₂, CF₃CF₂, CF₂ClCH₂, CH₂Cl, CH₂Br

The preferred values are the rounded-off rate coefficients determined by Sehested et al. (1993).

 $R = CF_3$

The preferred values are based on the temperature dependent data of Dognon et al. (1985),

adjusted to fit a k_{298} value based on the determinations of Plumb and Ryan (1982), Dognon et al. (1985), Peeters et al. (1992), Sehested and Nielsen (1993), Bevilacqua et al. (1993), Turnipseed et al. (1994), Bhatnagar and Carr (1994), Bourbon et al., (1996) and Louis et al. (1999).

$R = CH_2FCHF$

The preferred value is the rounded-off lower limit of Wallington et al. (1994).

$R = CF_3CHF$

The preferred value is the rounded-off rate coefficient determined by Wallington and Nielsen (1991).

R = CHFC1

The preferred value is the rounded-off rate coefficient determined by Bhatnagar and Carr (1996).

$R = CF_2Cl$

The preferred values are based on the temperature dependent data of Dognon et al. (1985), adjusted to fit the average value of k_{298} from the data of Sehested et al.(1993) and Dognon et al. (1985).

$R = CFCl_2$

The preferred values are based on the temperature dependent data of Dognon et al. (1985), adjusted to fit the average value of k_{298} from the data of Lesclaux and Caralp (1984), and Dognon et al. (1985)-

$R = CH_3CFCl$

The preferred values are based on the temperature dependent data of Wu and Carr (1996).

$R = CFCl_2CH_2$

The preferred value is the rounded-off average of the rate coefficients determined by Sehested et al. (1993) and Wu and Carr (1996).

$R = CF_3CCl_2$

The preferred value is the mid-point of the range of values determined by Hayman et al. (1994).

$R = CH_2ClCH_2$

The preferred value is the rate coefficient determined by Patchen et al. (2005).

$R = CCl_3$

The preferred values are based on the temperature dependent data of Dognon et al. (1985), adjusted to fit the average value of k_{298} from the data of Ryan and Plumb (1984) and Dognon et al. (1985).

$R = CHBr_2$

The preferred value is the rounded-off rate coefficient determined by Bayes et al. (2005).

The temperature dependence expressions are given in the form favoured by Dognon et al. (1985), and subsequently adopted by others, which best describe the measured data. Comparison of the reported rate coefficients with those for the corresponding alkyl peroxy

radicals, CH₃O₂ and C₂H₅O₂, indicates that the presence of a α -halogen substituent typically enhances k_{298} by a factor of about 1.5 – 2, with the reactions also possessing a similar dependence on temperature where comparison is possible. Although not so marked, it appears that additional α -halogen substituents result in further slight enhancements to k_{298} . Similarly to small alkyl peroxy radicals, the observations indicate that the reactions are dominated by the RO-forming channel (1). Dognon et al. (1985) measured quantum yields for NO₂ greater than unity for all the RO₂ radicals studied; suggesting that the RO₂ + NO reactions mainly form RO and NO₂, with additional NO₂ being produced from secondary chemistry. Recently, Nishida et al. (2004) have observed formation of a small yield (1.7 ± 0.3) % of CF₃ONO₂ from the reaction of CF₃O₂ with NO, confirming the existence of channel (2) at 930 mbar pressure. This suggests that the reactions of the C₁ and C₂ halogenated RO₂ radicals will generally have minor channels forming RONO₂, but additional studies are required to confirm this.

References

Bayes, K. D., Friedl, R. R. and Sander S. P.: J. Phys. Chem. A, 109, 3045, 2005.

Bhatnagar, A. and Carr, R.W.: Chem. Phys. Lett., 231, 454, 1994.

Bhatnagar, A. and Carr, R.W.: Chem. Phys. Lett., 238, 9, 1995.

Bhatnagar, A. and Carr, R.W.: Chem. Phys. Lett., 258, 651, 1996.

Bevilacqua, T. J., Hanson, D. R. and Howard, C. J.: J. Phys. Chem., 97, 3750, 1993.

Bourbon, C., Brioukov, M., Hanoune, B., Sawerysyn, J. P. and Devolder, P.: Chem. Phys. Lett., 254, 203, 1996.

Dognon, A. M., Caralp, F. and Lesclaux, R.: J. Chim. Phys., 82, 349, 1985.

Hayman, G. D., Jenkin, M. E., Murrells, T. P. and Johnson, C. E.: Atmos. Environ., 28A, 421, 1994.

Lesclaux, R. and Caralp, F.: Int. J. Chem. Kinet., 16, 1117, 1984.

Louis, F., Burgess, D. R., Rayez, M. T. and Sawerysyn, J. P.: Phys. Chem. Chem. Phys., 1, 5087, 1999.

Nishida, S., Takahashi, K., Matsumi, Y., Chiappero, M., Arguello, G., Wallington, T. J., Hurley, M. D., Ball J. C.: Chem. Phys. Lett., 388, 242, 2004.

Peeters, J., Vertommen, J. and Langhans, I.: Ber. Bunsenges. Phys. Chem., 96, 431, 1992.

Patchen, A. K., Pennino, M. J. and Elrod, M. J.: J. Phys. Chem. A, 109, 5865, 2005.

Plumb, I. C. and Ryan, K. R.: Chem. Phys. Lett., 92, 236, 1982.

Ryan, K. R. and Plumb, I. C.: Int. J. Chem. Kinet., 16, 591, 1984.

Sehested, J. and Nielsen, O. J.: Chem. Phys. Lett., 206, 369, 1993.

Sehested, J., Nielsen, O. J. and Wallington, T. J.: Chem. Phys. Lett., 213, 457, 1993.

Turnipseed, A. A., Barone, S. B. and Ravishankara, A. R.: J. Phys. Chem., 98, 4594, 1994.

Wallington, T. J. and Nielsen, O. J.: Chem. Phys. Lett., 187, 33, 1991.

Wallington, T. J., Dagaut, P. and Kurylo, M. J.: Chem. Rev., 92, 667, 1992.

Wallington, T. J., Hurley, M. D., Ball, J. C., Ellermann, T., Nielsen, O. J. and Sehested, J.: J. Phys. Chem., 98, 5435, 1994.

Wu, F. and Carr, R. W.: Int. J. Chem. Kinet., 28, 9, 1996.