IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet II.A1.158 Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. The citation for this data sheet is: Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (http://iupac.pole-ether.fr) This datasheet last evaluated: September 2013; last change in preferred values: September 2013 ### Rate coefficient data | k/cm³ molecule-1 s-1 | Temp./K | Reference | Technique/
Comments | |--|---------------|----------------------------|------------------------| | Absolute Rate Coefficients | | | | | 1.6 x 10 ⁻¹⁶ | 294 | Ripperton et al., 1972 | S-CL | | $(3.3 \pm 0.3) \times 10^{-16}$ | 298 | Japar et al., 1974 | S-CL | | 1.45 x 10 ⁻¹⁶ | 295 ± 1 | Grimsrud et al., 1975 | F-CL | | $9.4 \times 10^{-16} \exp[-(731 \pm 173)/T]$ | 276-324 | Atkinson et al., 1982 | S-CL/GC (b) | | $(8.4 \pm 1.9) \times 10^{-17}$ | 296 ± 2 | | | | $(9.71 \pm 1.06) \times 10^{-17}$ | 296 ± 2 | Atkinson et al., 1990 | S-CL/GC (c) | | $1.4 \times 10^{-15} \exp[-(833 \pm 86)/T]$ | 243.1-303.2 | Tillmann et al., 2009 | S-UVA/MS (d) | | $(9.0 \pm 0.6) \times 10^{-17}$ | 303.2 | | | | $(1.1 \pm 0.1) \times 10^{-16}$ | 296 ± 1 | Bernard et al., 2012 | F-CL (e) | | Relative Rate Coefficients | | | | | $(8.22 \pm 1.24) \times 10^{-17}$ | 297 ± 2 | Nolting et al., 1988 | RR-GC (g) | | $5.7 \times 10^{-16} \exp[-(555 \pm 87)/T]$ | 288-363 | Khamaganov and Hites, 2001 | RR-MS (g,h) | | $(9.01 \pm 0.44) \times 10^{-17}$ | 298 | _ | | | $3.5 \times 10^{-16} \exp[-(427 \pm 303)/T]$ | 288-343 | Khamaganov and Hites, 2001 | RR-MS (g,i) | | $(8.17 \pm 0.33) \times 10^{-17}$ | 298 | | | | $(1.06 \pm 0.09) \times 10^{-16}$ | 295 ± 0.5 | Witter et al., 2002 | RR-GC (j) | | $(9.26 \pm 0.84) \times 10^{-17}$ | 302 ± 1 | Bernard et al., 2012 | RR-IR (k,l) | | $(1.03 \pm 0.04) \times 10^{-16}$ | 302 ± 1 | | RR-IR (k,m) | | $(1.13 \pm 0.14) \times 10^{-16}$ | 298 ± 2 | Stewart et al., 2013 | RR-GC (n) | # **Comments** - (a) 2,6,6-trimethyl-bicyclo[3.1.1]hept-2-ene. - (b) *k* determined from the observed first-order rate of ozone decay (measured with a chemiluminescence analyzer) in the presence of known excess concentrations of α-pinene (measured by GC-FID). Experiments were carried out either in a 175 L Teflon bag or in the SAPRC 5800 L Teflon-coated environmental chamber. - (c) k determined from the observed first-order rate of ozone decay (measured with a chemiluminescence analyzer) in the presence of known excess concentrations of α -pinene (measured by GC-FID). - Experiments were carried out in a 160 L Teflon chamber. From measurements of the absolute rate coefficient for the reaction of O_3 with sabinene and the ratio $k(O_3 + \alpha$ -pinene)/ $k(O_3 + \alpha$ -pinene), a rate coefficient of $k(O_3 + \alpha$ -pinene) = $(7.99 \pm 1.20) \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹ was also derived. - (d) k determined from the observed first-order rate of ozone decay (measured with a UV absorption monitor) in the presence of known excess concentrations of α -pinene (measured by PTR-MS) and cyclohexane to scavenge HO radicals. Experiments were carried out at atmospheric pressure in a thermostatically-controlled 84.3 m³ aluminium chamber. - (e) k determined from the observed first-order rate of ozone decay (measured with a chemiluminescence analyzer) in the presence of known excess concentrations of α -pinene, in a flow reactor at a total pressure of \sim 1 bar. - (f) The concentrations of a series of alkenes (including α -pinene and cis-but-2-ene, the reference compound) were monitored by GC in a 520 L Pyrex chamber at ~1 bar pressure of purified air in the presence of O₃. The measured rate coefficient ratio $k(O_3 + \alpha$ -pinene)/ $k(O_3 + cis$ -but-2-ene) is placed on an absolute basis using a rate coefficient at 297 K of $k(O_3 + cis$ -but-2-ene) = 1.25 x 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ (IUPAC, current recommendation). Details concerning the reactant mixtures and the presence or absence of an HO radical scavenger were not reported. - (g) The concentrations of α -pinene and but-1-ene or 2-methylpropene (the reference compounds) were monitored by MS in reacting O₃ α -pinene but-1-ene (or 2-methylpropene) acetaldehyde (or ethanol) [HO radical scavengers] He mixtures in a 192 cm³ volume quartz vessel at ~1 bar pressure. The measured rate coefficient ratios $k(O_3 + \alpha$ -pinene)/ $k(O_3 + \text{but-1-ene}) = 0.17 \exp[(1190 \pm 87)/T]$ and $k(O_3 + \alpha$ -pinene)/ $k(O_3 + 2$ -methylpropene) = 0.13 $\exp[(1203 \pm 303)/T]$ are placed on an absolute basis using $k(O_3 + \text{but-1-ene}) = 3.35 \times 10^{-15} \exp(-1745/T)$ and $k(O_3 + 2$ -methylpropene) = 2.70 $\times 10^{-15} \exp(-1630/T)$ cm³ molecule⁻¹ s⁻¹ (IUPAC, current recommendations). Khamaganov and Hites (2001) also report the Arrhenius expression, $k(O_3 + \alpha$ -pinene) = 4.8 $\times 10^{-16} \exp[-(530 \pm 150)/T)$ cm³ molecule⁻¹ s⁻¹ over the temperature range 288-363 K and $k(O_3 + \alpha$ -pinene) = (8.41 ± 0.74) $\times 10^{-17}$ cm³ molecule⁻¹ s⁻¹ at 298 K, based on the combined data. - (h) Relative to $k(O_3 + but-1-ene)$. - (i) Relative to $k(O_3 + 2$ -methylpropene). - (j) The concentrations of α -pinene and 2-methylbut-2-ene (the reference compound) were monitored by GC in reacting O_3 α -pinene 2-methylbut-2-ene m-xylene (the HO radical scavenger) air mixtures in a flow system at 100 mbar pressure. The measured rate coefficient ratio of $k(O_3 + \alpha$ -pinene)/ $k(O_3 + 2$ -methylbut-2-ene) = 0.270 \pm 0.022 is placed on an absolute basis using a rate coefficient at 295 K of $k(O_3 + 2$ -methylbut-2-ene) = 3.92 x 10^{-16} cm³ molecule⁻¹ s⁻¹ (Atkinson and Arey, 2003a). - (k) The concentrations of α -pinene and cyclohexene or *cis*-cyclooctene (the reference compounds) were monitored by FT-IR in reacting O₃ α -pinene reference compound cyclohexane (HO radical scavenger) air mixtures in a 7300 L Teflon chamber at ~1 bar pressure. The measured rate coefficient ratios, $k(O_3 + \alpha\text{-pinene})/k(O_3 + \text{cyclohexene}) = 1.09 \pm 0.10$ and $k(O_3 + \alpha\text{-pinene})/k(O_3 + cis\text{-cyclooctene}) = 0.27 \pm 0.01$, are placed on an absolute basis using $k(O_3 + \text{cyclohexene}) = 8.50 \text{ x}$ 10^{-17} and $k(O_3 + \text{cis-cyclooctene}) = 3.80 \text{ x}$ 10^{-16} cm³ molecule⁻¹ s⁻¹ at 302 K (Atkinson and Arey, 2003a). - (1) Relative to $k(O_3 + \text{cyclohexene})$. - (m) Relative to $k(O_3 + cis$ -cyclooctene). - (n) The concentrations of α -pinene and cycloheptene (the reference compound) were monitored by GC-FID in flowing mixtures of O_3 , α -pinene, cycloheptene, cyclohexane (the HO radical scavenger) and air at 760 Torr (1.013 bar) pressure. The measured rate coefficient ratio of $k(O_3 + \alpha$ -pinene)/ $k(O_3 + \alpha$ -cycloheptene) = 0.453 \pm 0.036 is placed on an absolute basis using a rate coefficient at 298 K of $k(O_3 + \alpha$ -cycloheptene) = 2.50 x 10⁻¹⁶ cm³ molecule⁻¹ s⁻¹ (Atkinson and Arey, 2003a). #### **Preferred Values** | Parameter | | Value | T/K | |-------------|--|--|----------------| | | /cm³ molecule-1 s-1
/cm³ molecule-1 s-1 | 9.4 x 10 ⁻¹⁷
8.05 x 10 ⁻¹⁶ exp(-640/ <i>T</i>) | 298
240-370 | | Reliability | | | | | • | $\Delta \log k$ | ± 0.15 | 298 | | | $\Delta E/R$ | ± 300 | 240-370 | # Comments on Preferred Values The room temperature rate coefficients reported by Ripperton et al. (1972), Japar et al. (1974) and Grimsrud et al. (1975) are significantly higher than the more recent measurements of Atkinson et al. (1982, 1990), Nolting et al. (1988), Khamaganov and Hites (2001), Witter et al. (2002), Tillmann et al. (2009), Bernard et al. (2012) and Stewart et al. (2013); although there is still a significant amount of scatter between the room temperature rate coefficients of these more recent measurements. The preferred temperature dependence is obtained from a simple average of the temperature dependences obtained by Atkinson et al. (1982), Khamaganov and Hites (2001) and Tillmann et al. (2009). The preferred 298 K rate coefficient is an average of those of Atkinson et al. (1982, 1990), Nolting et al. (1988), Khamaganov and Hites (2001), Witter et al. (2002), Tillmann et al. (2009), Bernard et al. (2012) and Stewart et al. (2013), corrected to 298 K where necessary using the preferred temperature dependence. The pre-exponential factor is adjusted to fit the 298 K preferred value. Product yields and mechanistic information have been reported in a number of studies, as summarized in the reviews of Atkinson and Arey (2003b) and Johnson and Marston (2008). The reaction proceeds by initial addition of O_3 to the C=C bond in α -pinene to form a "primary ozonide (POZ)" which rapidly decomposes, mainly to form two carbonyl-substituted Criegee intermediates ((I) and (II)), as represented in the following schematic: The Criegee intermediates mainly decompose to form HO radicals, and a number of β -oxo alkyl radicals, the further chemistry of which may form a number of reported multifunctional organic products containing hydroxy, hydroperoxy, carbonyl and acid functionalities. Formation of HO via the accepted decomposition mechanism (involving abstraction of a β -hydrogen via a vinyl hydroperoxide intermediate) is not possible for the *anti*- conformer of Criegee Intermediate (I) (e.g. see Johnson and Marston, 2008), which is expected to react predominantly with H₂O under atmospheric conditions, leading to the formation of pinonaldehyde and H₂O₂, or pinonic acid. Consensus yields are shown for HO radicals, α -pinene oxide and pinonaldehyde. ## References Atkinson, R. and Arey, J.: Chem. Rev., 103, 4605, 2003a. Atkinson, R. and Arey, J.: Atmos. Environ., 37 Suppl. 2, S197, 2003b. Atkinson, R., Winer, A. M. and Pitts Jr., J. N.: Atmos. Environ., 16, 1017, 1982. Atkinson, R., Hasegawa, D. and Aschmann, S. M.: Int. J. Chem. Kinet., 22, 871, 1990. Bernard, F., Fedioun, I., Peyroux, F., Quilgars, A., Daële, V. and Mellouki, A.: J. Aerosol Sci., 43, 14, 2012. Grimsrud, E. P., Westberg, H. H. and Rasmussen, R. A.: Int. J. Chem. Kinet., Symp. 1, 183, 1975. Japar, S. M., Wu, C. H. and Niki, H.: Environ. Lett., 7, 245, 1974. Johnson, D. and Marston, G.: Chem. Soc. Rev., 37, 699, 2008. Khamaganov, V. G. and Hites, R. A.: J. Phys. Chem. A, 105, 815, 2001. Nolting, F., Behnke, W. and Zetzsch, C.: J. Atmos. Chem., 6, 47, 1988. Ripperton, L. A., Jeffries, H. E. and White, O.: Adv. Chem. Ser., 113, 219, 1972. Stewart, D. J., Almabrok, S. H., Lockhart, J. P., Mohamed, O. M., Nutt, D. R., Pfrang, C., Marston, G.: Atmos. Environ., 70, 227, 2013. Tillmann, R., Saathoff, H., Brauers, T., Kiendler-Scharra, A. and Mentel, T. F.: Phys. Chem. Chem. Phys., 11, 2323, 2009. Witter, M., Berndt, T., Böge, O., Stratmann, F. and Heintzenberg, J.: Int. J. Chem. Kinet., 34, 394, 2002. - ▲ Atkinson et al. (- ♦ Khamaganov an - ♦ Khamaganov an \Diamond \Diamond 0