IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet I.A3.45 NOx15

Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

The citation for this data sheet is: Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 4, 1461, 2004; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (http://iupac.pole-ether.fr). This datasheet last evaluated: November 2017; last change in preferred values: May 2008.

$HO_2 + NO \rightarrow NO_2 + HO$	(1)
$HO_2 + NO + M \rightarrow HNO_3 + M$	(2)

 $\Delta H^{\circ}(1) = -34.5 \text{ kJ mol}^{-1}$ $\Delta H^{\circ}(2) = -59.4 \text{ kJ mol}^{-1}$

$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients			
$(8.1 \pm 1.5) \times 10^{-12}$	296	Howard and Evenson, 1977	DF-LMR (a)
$3.3 \times 10^{-12} \exp[(2.54 \pm 50)/T]$	230-400	Howard, 1979	DF-LMR
8.01×10^{-12}	299		
$5.7 \times 10^{-12} \exp[(130 \pm 270)T]$	270-425	Leu, 1979	DF-RF (b)
$(9.8 \pm 1.6) \ge 10^{-12}$	298		
$(1.1 \pm 0.3) \ge 10^{-11}$	297	Glaschick-Schimpf et al., 1979	DF (c)
$(7.6 \pm 1.7) \times 10^{-12}$	293	Hack <i>et al.</i> , 1980	DF-LMR/EPR (d)
$3.57 \times 10^{-12} \exp[(226 \pm 41)/T]$	423-1271	Howard, 1980	DF-LMR (e)
7.6×10^{-12}	298*		
$(8.5 \pm 1.3) \ge 10^{-12}$	297	Jemi-Alade and Thrush, 1990	DF-LMR (f)
$3.0 \ge 10^{-12} \exp[(290 \pm 30)/T]$	206-295	Seeley et al., 1996	DF-CIMS (g)
$(8.0 \pm 0.5) \times 10^{-12}$	294		
$(9.6 \pm 1.5) \ge 10^{-12}$	298	Bohn and Zetzsch, 1997	PLP-A (h)
$3.98 \times 10^{-12} \exp \left[(223 \pm 16.5)/T \right]$	183-300	Bardwell et al., 2003	DF-CIMS (i)
$(8.43 \pm 0.20) \times 10^{-12}$	298		
Relative Rate Coefficients			
$(7.3 \pm 0.7) \times 10^{-12}$	298	Thrush and Wilkinson, 1981	DF-LMR (j)
Branching ratios			
$k_1/k > 0.95$	298	Bohn and Zetzsch, 1997	PLP-A (h)
$k_1/k = (1 \pm 0.05)$	183-300	Bardwell et al., 2003	DF-CIMS (i)
k/k = 0.180(-+0.04%) (at 267 mbor N)	298	Butkovskaya et al., 2005	DF-CIMS (k)
$k_2/k = 0.18\% = 0.06\%$ (at 207 IIIDat N ₂)	222 208 V		
$k_2/k = 1.78 \times 10^{-1} \exp[(15/4 \pm 05)/T]$	223-290 K		
$k_{2}/k_{-} \int \left[(530 + 10)/T \right] + 8.53 \times 10^{-4} \times D$	223-298	Butkovskava et al. 2007	DF-CIMS (1)
(1.73 ± 0.07) /100 (<i>P</i> in mbar)	223 270	Duckovskuju ot ul., 2007	
(1.75 ± 0.07) (1 m mod)			

Rate coefficient data ($k = k_1 + k_2$)

Comments

- (a) [HO₂] was monitored by LMR. An upper limit of 4.5 x 10^{-30} cm⁶ molecule⁻² s⁻¹ was established for the rate coefficient of the potentially pressure dependent third-order channel.
- (b) [HO] was monitored.
- (c) [HO₂] was monitored in excess NO by the light emitted at 1.43 μ m after energy transfer from O₂(¹ Δ) produced by a microwave discharge in NO.
- (d) $[HO_2]$ was monitored by both LMR and EPR. The rate coefficient was observed to be pressure independent over the range 2.1-16.7 mbar (1.6-12.5 Torr).
- (e) The same technique was used as in similar earlier studies (Howard and Evenson, 1977; Howard 1979) from the same laboratory. The author combined the data from the present study with that at lower temperatures from the earlier studies to derive the expression $k = 3.51 \times 10^{-12} \exp[(240\pm30)/T) \text{ cm}^3$ molecule⁻¹ s⁻¹ for the temperature range 232-1271 K. The rate coefficient for the reverse reaction was also measured over the range 425-1115 K and from the two studies a value of $\Delta H^{\circ}(\text{HO}_2) = (10\pm2.5)$ kJ mol⁻¹ at 298 K was derived. The value of k at 298 K tabulated is obtained by extrapolation of the high temperature expression.
- (f) [HO₂] was monitored by LMR and HO radicals were scavenged by $C_2F_3Cl. k$ was observed to be independent of pressure over the range 1.1-17 mbar (0.8-13 Torr).
- (g) Turbulent flow technique was used. [HO₂], [HO], and [NO₂] were monitored by high pressure chemical ionisation mass-spectrometry. k was found to independent of pressure over the range 93-253 mbar N₂ (70-190 Torr) at 294 K.
- (h) Pulsed laser photolysis at 248 nm of $H_2O_2/NO/O_2$ mixtures at total pressures of 0.1, 0.5, and 1 bar. [OH] was monitored by time resolved CW UV laser absorption in the 308 nm region. The value of *k* was found to be independent of pressure. The rate of HO formation and HO₂ removal were found to be identical within experimental error indicating an HO yield > 95%.
- (i) Detection of HO, HO₂ and NO₂ using chemical ionisation with SF₆⁻. No pressure dependence of *k* between 75 and 220 Torr within the range of temperatures covered. Measurement of HO and NO₂ allowed derivation of the \approx unity branching ratio for channel (1).
- (j) [HO] and [HO₂] were monitored by LMR. The steady-state values of [HO] and [HO₂] were measured in a system where their relative concentrations are related by [HO]/[HO₂] = $k/k(\text{HO}+\text{H}_2\text{O}_2)$. k was calculated using a rate coefficient of $k(\text{HO}+\text{H}_2\text{O}_2) = 1.7 \times 10^{-12} \text{ cm}^3$ molecule⁻¹s⁻¹ (IUPAC, 2008).
- (k) High pressure, turbulent flow tube study of HNO_3 formation. HNO_3 was detected by chemical ionisation using SF_6^- ions and calibrated relative to its formation in the HO + NO_2 reaction. Unwanted formation of HNO_3 via the Reaction of HO with NO_2 (both from 1) was avoided by using excess NO or C_6H_{12} as HO scavenger. The yield of HNO_3 was found to increase in the presence of water vapour and with pressure between 133 and 533 Torr N_2 .
- (1) *P* in mbar. Same set-up as described in comment k, but with chemical amplification of the NO₂ and HNO₃ products via addition of CO and an extended study of the pressure dependence of the branching to HNO₃. Also, HNO₃ and NO₂ signals were calibrated using reference standards rather than in-situ production.

Preferred Values

Parameter	Value	T/K
k/cm^3 molecule ⁻¹ s ⁻¹	8.5×10^{-12}	298
k/cm^3 molecule ⁻¹ s ⁻¹	$3.45 \ge 10^{-12} \exp(270/T)$	200-400
k_2/k	$\{[(530 \pm 10)/T] + 4.8 \times 10^{-4} \times P - (1.73 \pm 0.07)\}/100$	
	(P in mbar)	
Reliability		
$\Delta \log k$	± 0.1	298
$\Delta (\vec{E/R}) / K$	± 100	200-400
$\Delta \log(k_2/k)$	0.3	

Comments on Preferred Values

The preferred value of k at 298 K is the mean of the values of Howard and Evenson (1977), Howard (1979), Leu (1979), Hack et al. (1980), Jemi-Alade and Thrush (1990), Seeley et al. (1996), Bohn and Zetzsch (1997) and Bardwell et al. (2003). The temperature dependence was obtained by unweighted, least-squares fitting to the data reported by Howard (1979), Seeley et al. (1996) and Bardwell et al. (2003). The pre-exponential factor has been adjusted to fit the preferred value of k at 298 K.

Measurements of the branching ratios for HO formation (Bohn and Zetzsch, 1997), NO₂ formation (Bardwell et al. 2003) and HNO₃ formation (Butkovskaya et al., 2005, 2007) show that the reaction proceeds almost entirely via channel (1) with less than 1% via a termolecular process to form HNO₃ under all atmospheric conditions. Although the possibility for HNO₃ formation via rearrangement of an initially formed HOONO adduct has been confirmed in the theoretical study of Zhang and Donanhue (2006), further studies of the formation of HNO₃ in the title reaction are urgently required to reduce uncertainties. The yield of HNO₃ increases by added water, according to a factor $\{1+2 \times 10^{-17} [H_2O]\}$ at 298 K where $[H_2O]$ is in molecule cm⁻³ (Butkovskaya et al., 2009). This effect could be attributed to a chaperone mechanism involving HO₂-H₂O complexes or to large energy transfer efficiency of water as a collision partner of vibrationally excited HNO₃ (see Guide to the Gas Phase Data Sheets).

References

- Bardwell, M.W., Bacak, A., Raventos, M.T., Percival, C.J., Sanchez-Reyna, G., and Shallcross, D.E.: Phys. Chem. Chem. Phys., 5, 2381, 2003.
- Bohn, B., and Zetzsch, C.: J. Phys. Chem. A 101, 1488, 1997.
- Butkovskaya, N.I., Kukui, A., Pouvesle, N., and Le Bras, G.: J. Phys. Chem. A, 109, 6509, 2005.

Butkovskaya, N., Kukui, A., and Le Bras, G.: J. Phys. Chem. A, 111, 9047, 2007.

Butkovskaya, N., Rayez, M.-T., Rayez, J.-C., Kukui, A., and Le Bras, G.: J. Phys. Chem. A, 113, 11327, 2009.

- Gershenzon, Yu. M., Il'in, S. D., Politenkova, G. G., and Remorov, R. G.: Chem. Phys. Rep. 18, 91, 1999.
- Glaschick-Schimpf, Leiss, A., Monkhouse, P. B., Schurath, U., Becker, K. H., and Fink, E.H.: Chem. Phys. Lett. 67, 318, 1979. Howard, C. J., and Evenson, K. M.: Geophys. Res.Lett. 4, 437, 1977.
- Hack, W., Preuss, A. W., Temps, F., Wagner, H. Gg., and Hoyermann, K.: Int. J. Chem. Kinet. 12, 851, 1980.
- Howard, C. J.: J. Chem. Phys. 71, 2352, 1979.
- Howard, C. J.: J. Am. Chem. Soc. 102, 851, 1980.
- Jemi-Alade, A. A., and Thrush, B. A.: J. Chem. Soc. Faraday Trans. 86, 3355, 1990.
- Leu, M.-T.; J. Chem. Phys. 70, 1662, 1979.
- Seeley, J. V., Meads, R. F., Elrod, M. J., and Molina, M. J.: J. Phys. Chem. 100, 4026, 1996.
- Thrush, B. A., and Wilkinson, J. P. T.: Chem. Phys. Lett. 81, 1, 1981.
- Zhang, J., and Donanhue, N. M.: J. Phys. Chem. A, 110, 6898, 2006.

