Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet NO3_VOC36

Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

The citation for this data sheet is: IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (http://iupac.pole-ether.fr)

This datasheet last evaluated: June 2015; last change in preferred values: June 2013

$NO_3 + \bigcirc$	$(\beta$ -pinene) \rightarrow products
-------------------	--

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Relative Rate Coefficients			
$(2.36 \pm 0.10) \times 10^{-12}$ $(2.38 \pm 0.05) \times 10^{-12}$ $(1.1 \pm 0.4) \times 10^{-12}$	295 296 298*	Atkinson et al., 1984 Atkinson et al., 1988 Kotzias et al., 1989	RR-GC (a) RR-GC (b) RR-FTIR (c)
$(2.81 \pm 0.47) \times 10^{-12}$	298	Barnes et al., 1990	RR-GC (d)

Rate coefficient data

 β -pinene is 6,6-dimethyl-2-methylene-bicyclo[3.1.1]heptane.

Comments

- (a) 6400 L Teflon chamber at 295 K and 980 mbar (735 Torr) of air. NO₃ was generated by the thermal decomposition of N₂O₅. β -pinene and 2-methyl-2-butene (reference reactant) were monitored by GC. The rate constant ratio, $k(NO_3 + \beta$ -pinene) / $k(NO_3 + 2$ -methyl-2-butene) = 0.252 ± 0.011 is placed on an absolute basis using $k(NO_3 + 2$ -methyl-2-butene) = 9.37 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K (Atkinson and Arey, 2003).
- (b) 6400 L Teflon chamber at 296 K and 980 mbar (735 Torr) of air. NO₃ was generated by the thermal decomposition of N₂O₅. β -pinene and trans-2-butene (reference reactant) were monitored by GC. The rate constant ratio, $k(NO_3 + \beta$ -pinene) / $k(NO_3 + \text{trans-2-butene}) = 6.10 \pm 0.14$ is placed on an absolute basis using $k(NO_3 + \text{trans-2-butene}) = 3.9 \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 298 K (IUPAC 2016, datasheet NO₃_VOC30).
- (c) 450 L Teflon-coated glass reactor, with β -pinene, N₂O₅ and NO₂ monitored by FTIR. NO₃, NO₂ and N₂O₅ were assumed to be in equilibrium and the NO₃ concentration was calculated from the equilibrium constant (1.9 × 10⁻¹¹ molecule⁻¹ cm³) and used to derive the rate constant from the β -pinene decay constant. The authors did not quote the temperature of these experiments, making re-assessment of their data via e.g. use of a more recently measured equilibrium constant difficult.
- (d) 420 L glass chamber at 298 K and 1bar of air. NO₃ was generated by the thermal decomposition of N₂O₅. β -pinene and 2-methyl-2-butene were monitored by GC. The rate constant ratio, $k(NO_3 + \beta$ -pinene) / $k(NO_3 + 2$ -methyl-2-butene) = 0.30 ± 0.05 is placed on an absolute basis using $k(NO_3 + 2$ -methyl-2-butene) = 9.37 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 298 K (Atkinson and Arey, 2003).

Preferred Values

	Parameter	Value	T/K
	k/cm^3 molecule ⁻¹ s ⁻¹	2.5×10^{-12}	298
Reliabili	$\Delta \log k$	± 0.12	298

Comments on Preferred Values

The relative rate studies of this reaction which employed either 2-methyl-2-butene or trans-2-butene as reference reactant s are in broad agreement, though there is no obvious reason why Atkinson et al. (1984) and Barnes et al. (1990), who used the same reference reactant should derive rate coefficients which diverge by ~20 %. These studies are preferred over that of Kotzias et al. (1989), as there are greater uncertainties related to using the strongly temperature dependent equilibrium constant for the NO₂ + NO₃ \rightleftharpoons N₂O₅ reaction, which are compounded by the fact that authors did not cite their experimental temperature. The preferred value of the 298 K rate coefficient is thus an unweighted average of the results derived by Atkinson et al. (1984, 1988) and Barnes et al. (1990).

The reaction mechanism involves the addition of NO₃ across the double bond to form a nitrooxyalky radical, which, in air, forms a nitrooxyalkyl peroxy radical. Hallquist et al. (1999) identified the end products nopinone (molar yields of 1-2 %), carbonyls (estimated molar yield of 12-14 %) and organic nitrates (estimated molar yield of 61-74 %) which were also observed using FTIR and MS by Kotzias et al. (1989), but not quantified. Using thermal dissociation of alkyl nitrates and peroxynitrates coupled to LIF detection of NO₂, Fry et al., (2009) derived a molar organic nitrate yield of ~40 %. Hydroxynitrates (m/z = 215), hydroxycarbonyl nitrazes (m/z = 229) and dihydroxynitrates / hydroperoxides and cyclic ether hydroxynitrates (m/z = 231) have been observed as gas-phase products (Boyd et al., 2015), with altogether more than forty C₇-C₁₀ organic nitrates (in both gas and particle phase) possessing between 4 and 9 oxygen atoms detected (Boyd et al. 2015, Nah et al., 2016). Formation of peroxy radical that may perform intramolecular H-abstraction (auto-oxidation) has been proposed as a potential explanation for the high O-to-N ratios observed.

Secondary organic aerosol formation has been observed in the smog-chamber studies of NO₃ + β -pinene (Hallquist et al., 1999; Griffin et al. 1999; Fry et al., 2009, 2014: Boyd et al., 2015; Nah et al., 2016) with mass-based yields of up to 100 % depending on the amount of β -pinene reacted. The aerosol yield is not strongly influenced by relative humidity, seed-aerosol acidity or whether the fate of RO₂ is reaction with NO₃ or HO₂ (Boyd et al., 2015). Organonitrates were found to comprise $\approx 45-75$ % of the aerosol mass (Fry et al., 2014, Boyd et al., 2015: Nah et al., 2016) with evidence for particle-phase hydrolysis of tertiary nitrates (Boyd et al., 2015).

References

Atkinson, R., Aschmann, S. M., Winer, A. M., and Pitts, J. N., Env. Sci. Tech., 18, 370-375, 1984.

Atkinson, R., and Arey, J., Chem. Rev., 103, 4605-4638, 2003.

Barnes, I., Bastian, V., Becker, K. H., and Tong, Z., J. Phys. Chem., 94, 2413-2419, 1990. Boyd, C. M., Sanchez, J., Xu, L., Eugene, A. J., Nah, T., Tuet, W. Y., Guzman, M. I., and Ng, N. L., Atmos. Chem. Phys., 15, 7497-7522, 2015.

Fry, J. L., Kiendler-Scharr, A., Rollins, A. W., Wooldridge, P. J., Brown, S. S., Fuchs, H., Dube, W., Mensah, A., dal Maso, M., Tillmann, R., Dorn, H. P., Brauers, T., and Cohen, R. C., Atmos. Chem. Phys., 9, 1431-1449, 2009.

Fry, J. L., Kiendler-Scharr, A., Rollins, A. W., Wooldridge, P. J., Brown, S. S., Fuchs, H., Dube, W., Mensah, A., dal Maso, M., Tillmann, R., Dorn, H. P., Brauers, T., and Cohen, R. C., Atmos. Chem. Phys., 9, 1431-1449, 2009.

Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J., Winkle, P. M., Lawler, M. J., Brown, S. S., Edwards, P. M., Cohen, R. C., and Lee, L., Env. Sci. Tech., 48, 11944-11953, 2014.

Griffin, R. J., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H., J. Geophys. Res.-Atmos., 104, 3555-3567, 1999.

Hallquist, M., Wangberg, I., Ljungstrom, E., Barnes, I., and Becker, K. H., Env. Sci. Tech., 33, 553-559, 1999.

IUPAC, Task Group on Atmospheric Chemical kinetic data evaluation. (Ammann, M.,

Atkinson, R., Cox, R.A., Crowley, J.N., Hynes, R. G., Jenkin, M.E., Mellouki, W., Rossi, M.

J., Troe, J. and Wallington, T. J.) Evaluated kinetic data: http://iupac.pole-ether.fr, 2013.

Kotzias, D., Hjorth, J. L., and Skov, H., Toxicol. Environ. Chem., 20-1, 95-99, 1989.

Nah, T., Sanchez, J., Boyd, C. M., and Ng, N. L., Env. Sci. Tech., 50, 222-231, 2016.