IUPAC Subcommittee on Gas Kinetic Data Evaluation – Data Sheet NO3 VOC21

Website: http://www.iupac-kinetic.ch.cam.ac.uk/. See website for latest evaluated data. Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This datasheet updated: 9th August 2002.

$$NO_3 + CH_3CH(OH)CH_3 \rightarrow HNO_3 + CH_3C(OH)CH_3 \qquad (1)$$
$$\rightarrow HNO_3 + CH_2CH(OH)CH_3 \qquad (2)$$

Rate coefficient data $(k = k_1 + k_2)$

k/cm³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $\leq 2.3 \times 10^{-15}$ $1.54 \times 10^{-12} \exp[-(1743 \pm 1009)/T]$ $(3.13 \pm 0.64) \times 10^{-15}$	298 ± 2 273-364 295	Wallington <i>et al.</i> , 1987 ¹ Langer and Ljungström, 1995 ²	FP-A DF-A
Relative Rate Coefficients $\leq (1.8 \pm 0.2) \times 10^{-15}$ $k_1 = (1.4 \pm 0.3) \times 10^{-15}$	298 ± 2 298 ± 2	Chew, Atkinson and Aschmann, 1998 ³ Chew, Atkinson and Aschmann, 1998 ³	RR (a)

Comments

(a) NO₃ radicals were generated by the thermal decomposition of N₂O₅ in air at atmospheric pressure. Experiments were carried out in a ~7000 liter Teflon chamber, and the concentrations of 2-propanol and methacrolein (the reference organic) were measured by GC. Rate coefficient ratios $k(NO_3 + 2-propanol)/k(NO_3 + methacrolein)$ were measured as a function of initially added NO₂ over the range (0-2.4) x 10¹⁴ molecule cm⁻³ (~2 x 10¹⁶ molecule cm⁻³ of ethane were added when no NO₂ was initially added). The rate coefficient ratios were independent of initial NO₂ concentration in the range (0-4.8) x 10¹³ molecule cm⁻³, but increased for initial NO₂ concentrations \geq 9.6 x 10¹³ molecule cm⁻³. Acetone was observed as a reaction product, presumably from channel (1) followed by,

$$CH_3C(OH)CH_3 + O_2 \rightarrow CH_3C(O)CH_3 + HO_2$$

with a yield of $\sim 0.76 \pm 0.09$ at initial NO₂ concentrations of (0-4.8) x 10^{13} molecule cm⁻³, decreasing at higher initial NO₂ concentrations. The values of $\{k(\text{NO}_3 + 2\text{-propanol}) \text{ (yield of acetone)}/k(\text{NO}_3 + \text{methacrolein)}\}$ were independent of initial NO₂ concentration over the entire range studied [(0-2.4) x 10^{14} molecule cm⁻³], with an average value of 0.40 ± 0.06 for experiments with initial NO₂ concentrations of (0-4.8) x 10^{13} molecule cm⁻³. The observed

behavior is interpreted as involving a gas-phase reaction of 2-propanol with the NO₃ radical and a reaction (gas-phase or heterogeneous) of N₂O₅ with 2-propanol to form nitrates.² The rate coefficient k is obtained from the rate coefficient ratio $k(NO_3 + 2\text{-propanol})/k(NO_3 + \text{methacrolein}) = 0.519 \pm 0.053$ at low added NO₂ concentrations, combined with a rate coefficient ratio of $k(NO_3 + \text{methacrolein}) = 3.5 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ at 298 ± 2 K.^{3,4} This overall rate coefficient could still be an upper limit, and the true rate coefficient may be the value obtained for k_1 obtained from the ratio $\{k(NO_3 + 2\text{-propanol})(\text{yield of } 2\text{-acetone})/k_2(NO_3 + \text{methacrolein}) = 0.40 \pm 0.06$ and the rate coefficient of $k(NO_3 + \text{methacrolein})$.^{3,4}

Preferred Values

 $k = 1.4 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ $k_1/k = 1.0 \text{ at } 298 \text{ K}.$

Reliability

 $\Delta \log k = \pm 0.3$ at 298 K. $\Delta (k_1/k) = \pm 0.3$ at 298 K.

Comments on Preferred Values

The room temperature values for the overall reaction rate coefficient k and for k_1 obtained by Chew *et al.*³ are consistent with the upper limit to the rate coefficient of Wallington *et al.*,¹ but are a factor of ~2 lower than the absolute rate coefficient of Langer and Ljungström.² It is expected that the reaction of the NO₃ radical occurs almost entirely by H-atom abstraction from the tertiary C-H bond (and hence that $k_1/k \sim 1.0$).⁵ This expectation is consistent with the data of Chew *et al.*³ The 298 K preferred value is based on the value of k_1 obtained by Chew *et al.*³ with the expectation that $k_1/k = 1.0$.⁵ No temperature dependence is recommended.

References

- ¹ T. J. Wallington, R. Atkinson, A. M. Winer, and J. N. Pitts, Jr., Int. J. Chem. Kinet. **19**, 243 (1987).
- S. Langer and E. Ljungström, J. Chem. Soc. Faraday Trans. **91**, 405 (1995).
- A. A. Chew, R. Atkinson, and S. M. Aschmann, J. Chem. Soc. Faraday Trans. 94, 1083 (1998).
- C. E. Canosa-Mas, S. Carr, M. D. King, D. E. Shallcross, K. C. Thompson, and R. P. Wayne, Phys. Chem. Chem. Phys. **1**, 4195 (1999).
- ⁵ R. Atkinson, J. Phys. Chem. Ref. Data **20**, 459 (1991).