IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet NO3_VOC21

Website: <u>http://iupac.pole-ether.fr</u>. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This data sheet updated: 10th December 2007, (with no revision of the preferred values).

$NO_3 + CH_3OH \rightarrow products$

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹ Temp./K Reference Technique/ Comments				
	k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients $\leq 6 \ge 10^{-16}$ 298 ± 2 Wallington et al., 1987FP-A $1.25 \ge 10^{-12} \exp[-(2562 \pm 241)/T]$ 294-473Canosa-Mas et al., 1989DF-A $(2.1 \pm 1.1) \ge 10^{-16}$ 294JDF-AJDF-A $1.06 \ge 10^{-12} \exp[-(2093 \pm 803)/T]$ 258-367Langer and Ljungström, 1995DF-A (a) $(1.32 \pm 0.24) \ge 10^{-16}$ 295JDF-A (a)	Absolute Rate Coefficients $\leq 6 \ge 10^{-16}$ $1.25 \ge 10^{-12} \exp[-(2562 \pm 241)/T]$ $(2.1 \pm 1.1) \ge 10^{-16}$ $1.06 \ge 10^{-12} \exp[-(2093 \pm 803)/T]$ $(1.32 \pm 0.24) \ge 10^{-16}$	298 ± 2 294-473 294 258-367 295	Wallington et al., 1987 Canosa-Mas et al., 1989 Langer and Ljungström, 1995	FP-A DF-A DF-A (a)

Comments

(a) The cited Arrhenius expression leads to a rate coefficient at 295 K of 8.8 x 10^{-16} cm³ molecule⁻¹ s⁻¹, clearly in disagreement with the measured value. A unit-weighted least-squares analysis of the rate coefficients measured by Langer and Ljungström (1995) (Table 3 of Langer and Ljungström, 1995) leads to k = 9.36 x 10^{-13} exp[-(2652 ± 312)/*T*] cm³ molecule⁻¹ s⁻¹, where the indicated error is one standard deviation.

Preferred Values

 $k = 1.3 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. $k = 9.4 \times 10^{-13} \exp(-2650/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ over the temperature range 250-370 K.

Reliability

 $\Delta \log k = \pm 0.5$ at 298 K. $\Delta (E/R) = \pm 700$ K.

Comments on Preferred Values

The reported rate coefficients of Canosa-Mas et al. (1987) are higher by factors of 1.6-2.1 than those of Langer and Ljungström (1995) over the temperature range common to both studies (294-373 K). Clearly there are systematic errors in one or both of these studies. Based on the observation that for the NO₃ radical reaction with 2-propanol the data of Langer and Ljungström (1995) may still be an upper limit to the rate coefficient (see datasheet for NO₃ + CH₃CH(OH)CH₃), the preferred values were derived from the data of Langer and Ljungström (1995) using the Arrhenius parameters given in Comment (a). The preferred 298 K rate coefficient is calculated from the resulting Arrhenius expression. It is possible that the preferred values are still high because of the potential for secondary reactions in slowly reacting systems using absolute rate methods.

References

Canosa-Mas, C. E., Smith, S. J., Toby, S. and Wayne, R. P.: J. Chem. Soc. Faraday Trans. 2, 85, 709, 1989.

Langer, S. and Ljungström, E.: J. Chem. Soc. Faraday Trans., 91, 405, 1995.

Wallington, T. J., Atkinson, R., Winer, A. M. and Pitts Jr., J. N.: Int. J. Chem. Kinet., 19, 243, 1987.