IUPAC Subcommittee on Gas Kinetic Data Evaluation – Data Sheet NO3 VOC17

Website: http://www.iupac-kinetic.ch.cam.ac.uk/. See website for latest evaluated data. Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.

This datasheet updated: 9th August 2002.

$NO_3 + [-CH_2CHC(CH_3)CH_2O-]$ (3-methyl furan) \rightarrow products

Rate coefficient data

k/cm³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Relative Rate Coefficients			
$(1.31 \pm 0.02) \times 10^{-11}$	296 ± 2	Alvarado, Atkinson, and Arey, 1996 ¹	RR (a)
$(2.86 \pm 0.06) \times 10^{-11}$	295 ± 2	Kind <i>et al.</i> , 1996 ²	RR (b)

Comments

- (a) Relative rate method carried out at one atmosphere of air. NO₃ radicals were generated by thermal decomposition of N₂O₅. The concentrations of 3-methylfuran and 2-methyl-2-butene (the reference compound) were measured by GC. The measured rate coefficient ratio of $k(NO_3 + 3$ -methylfuran)/ $k(NO_3 + 2$ -methyl-2-butene) = 1.40 ± 0.02 is placed on an absolute basis by use of a rate coefficient of $k(NO_3 + 2$ -methyl-2-butene) = 9.37 x 10⁻¹² cm³ molecule⁻¹ s⁻¹.³
- (b) Relative rate method carried out in a flow system at a total pressure of 6.8 mbar of N_2 . NO_3 radicals were generated by thermal decomposition of N_2O_5 . The concentrations of 3-methylfuran and 2,3-dimethyl-2-butene (the reference compound) were measured by GC. The measured rate coefficient ratio of $k(NO_3 + 3\text{-methylfuran})/k(NO_3 + 2,3\text{-dimethyl-2-butene}) = 0.50 \pm 0.01$ is placed on an absolute basis by use of a rate coefficient of $k(NO_3 + 2,3\text{-dimethyl-2-butene}) = 5.72 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.³ In the same study, the measured rate coefficient for the reaction of NO_3 radicals with furan was shown to be independent of total pressure (of N_2 diluent) over the range 6.8-200 mbar.

Preferred Values

$$k = 1.9 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$$

Reliability

 $\Delta \log k = \pm 0.5 \text{ at } 298 \text{ K}.$

Comments on Preferred Values

The rate coefficients measured in the relative rate studies of Alvarado *et al.*¹ and Kind *et al.*² disagree by a factor of 2.2, for unknown reasons. The preferred value is a simple average of the rate coefficients from these two studies, ^{1,2} with a large uncertainty limit. The reaction

of NO_3 radicals with 3-methylfuran proceeds by initial addition of the NO_3 radical to the C=C bonds.

References

³ R. Atkinson, J. Phys. Chem. Ref. Data **26**, 215 (1997).

¹ A. Alvarado, R. Atkinson, and J. Arey, Int. J. Chem. Kinet. **28**, 905 (1996).

² I. Kind, T. Berndt, O. Böge, and W. Rolle, Chem. Phys. Lett. **256**, 679 (1996).