IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet HOx VOC28 Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. This data sheet last evaluated: 2nd August 2007; no revision of preferred values. ## HO + CH₃CH(OH)CH₂CH₃ → products ### Rate coefficient data | k/cm³ molecule-1 s-1 | Temp./K | Reference | Technique/ Comments | |---|-------------------------------------|---|--------------------------------| | Relative Rate Coefficients
$(8.58 \pm 0.49) \times 10^{-12}$
$(8.80 \pm 0.14) \times 10^{-12}$
$(7.57 \pm 0.44) \times 10^{-12}$ | 296 ± 2 297 ± 3 297 ± 3 | Chew and Atkinson, 1996
Baxley and Wells, 1998
Baxley and Wells, 1998 | RR (a)
RR (b,c)
RR (b,d) | #### Comments - (a) HO radicals were generated by the photolysis of CH₃ONO in air, and the concentrations of - 2-butanol and cyclohexane (the reference compound) were measured by GC. The measured rate coefficient ratio of $k(\text{HO} + 2\text{-butanol})/k(\text{HO} + \text{cyclohexane}) = 1.24 \pm 0.07$ is placed on an absolute basis by use of a rate coefficient of $k(\text{HO} + \text{cyclohexane}) = 6.92 \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 296 K (Atkinson, 2003). - (b) HO radicals were generated by the photolysis of CH₃ONO in air, and the concentrations of - 2-butanol and *n*-nonane and *n*-dodecane (the reference compounds) were measured by GC. The measured rate coefficient ratios of k(HO + 2-butanol)/k(HO + n-nonane) and k(HO + n-nonane) - 2-butanol)/k(HO + n-dodecane) are placed on an absolute basis by use of rate coefficients at 297 K of k(HO + n-nonane) = 9.69 x 10⁻¹² cm³ molecule⁻¹ s⁻¹ and k(HO + n-dodecane) = 1.32 x 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ (Atkinson, 2003). - (c) Relative to HO + n-nonane. - (d) Relative to HO + n-dodecane. #### **Preferred Values** $k = 8.7 \text{ x } 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ at } 298 \text{ K}.$ #### Reliability $\Delta \log k = \pm 0.15 \text{ at } 298 \text{ K}.$ ## Comments on Preferred Values The preferred value is based on the relative rate coefficient of Chew and Atkinson (1996) and that of Baxley and Wells (1998) relative to HO + n-nonane, which are in excellent agreement. The rate coefficient of Baxley and Wells (1998) measured relative to that for HO + n- dodecane, while in agreement with the other two rate coefficients (Chew and Atkinson, 1996; Baxley and Wells, 1998), is more uncertain because of the small data-base for HO + n-dodecane (Atkinson, 2003), and hence this rate coefficient is not used in the evaluation. ## References Atkinson, R.: Atmos. Chem. Phys. 3, 2233, 2003. Baxley, J. S. and Wells, J. R.: Int. J. Chem. Kinet. 30, 745, 1998. Chew, A. A. and Atkinson, R.: J. Geophys. Res. 101, 28649, 1996.