## IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation - Data Sheet HOx_VOC23

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission.
This data sheet last evaluated: $2^{\text {nd }}$ August 2007; no revision of preferred values.

$$
\begin{align*}
& \mathrm{HO}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{OH}  \tag{1}\\
& \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{O} \tag{2}
\end{align*}
$$

$\Delta H^{\circ}(1)=-95.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
$\Delta H^{\circ}(2)=-60.2 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$

$$
\text { Rate coefficient data }\left(k=k_{1}+k_{2}\right)
$$

| $k / \mathrm{cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ | Temp./K | Reference | Technique/ Comments |
| :---: | :---: | :---: | :---: |
| Absolute Rate Coefficients |  |  |  |
| $(1.06 \pm 0.10) \times 10^{-12}$ | $296 \pm 2$ | Overend and Paraskevopoulos, 1978 | FP-RA |
| $(1.00 \pm 0.10) \times 10^{-12}$ | 298 | Ravishankara and Davis, 1978 | FP-RF |
| $4.8 \times 10^{-12} \exp [-(480 \pm 70) / T]$ | 240-440 | Wallington and Kurylo, 1987 | FP-RF |
| $(8.61 \pm 0.47) \times 10^{-13}$ | 296 |  |  |
| $(1.01 \pm 0.10) \times 10^{-12}$ | $298 \pm 2$ | McCaulley et al., 1989 | DF-LIF |
| $5.89 \times 10^{-20} T^{2.65} \exp (444 / T)$ | 294-866 | Hess and Tully, 1989 | PLP-LIF |
| $(9.34 \pm 0.41) \times 10^{-13}$ | 294 |  |  |
| $(9.0 \pm 0.9) \times 10^{-13}$ | $298 \pm 2$ | Nelson et al., 1990 | PR-RA |
| $(8.64 \pm 1.30) \times 10^{-12}$ | $1205 \pm 16$ | Bott and Cohen, 1991 | SH-RA |
| $3.6 \times 10^{-12} \exp [-(415 \pm 70) / T]$ | 235-360 | Jiménez et al., 2003 | PLP-LIF |
| $(9.3 \pm 1.1) \times 10^{-13}$ | 298 |  |  |
| $6.67 \times 10^{-18} T^{2} \exp [(140 \pm 14) / T]$ | 210-351 | Dillon et al., 2005 | PLP-LIF |
| $(9.3 \pm 0.7) \times 10^{-13}$ | $298 \pm 1$ |  |  |
| Relative Rate Coefficients |  |  |  |
| $(9.0 \pm 0.7) \times 10^{-13}$ | $300 \pm 3$ | Tuazon et al., 1983 | RR (a) |
| $(9.3 \pm 2.2) \times 10^{-13}$ | $298 \pm 2$ | Nelson et al., 1990 | RR (b) |
| $(8.6 \pm 0.8) \times 10^{-13}$ | $298 \pm 4$ | Picquet et al., 1998 | RR (c) |
| $(9.6 \pm 1.0) \times 10^{-13}$ | $298 \pm 2$ | Oh and Andino, 2001 | RR (d) |
| $(8.4 \pm 0.7) \times 10^{-13}$ | $298 \pm 2$ | Oh and Andino, 2001 | RR (b) |
| $(7.88 \pm 0.47) \times 10^{-13}$ | $296 \pm 2$ | Sørensen et al., 2002 | RR (e,f) |
| $(8.18 \pm 0.52) \times 10^{-13}$ | $296 \pm 2$ | Sørensen et al., 2002 | RR (e,g) |
| Branching Ratios |  |  |  |
| $k_{2} / k=0.15 \pm 0.08$ | $298 \pm 2$ | McCaulley et al., 1989 | (h) |

## Comments

(a) HO radicals were generated by the dark reaction of hydrazine with $\mathrm{O}_{3}$ in air. The concentrations of methanol and dimethyl ether (the reference compound) were measured by FTIR spectroscopy. The measured rate coefficient ratio of $k(\mathrm{HO}+$ methanol $) / k(\mathrm{HO}+$ dimethyl ether $)=0.314 \pm 0.024$ is placed on an absolute basis using the rate coefficient $k(\mathrm{HO}+$ dimethyl ether $)=2.86 \times 10^{-12} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at 300 K (IUPAC, current recommendation).
(b) HO radicals were generated by the photolysis of $\mathrm{CH}_{3} \mathrm{ONO}$ in air at $>300 \mathrm{~nm}$. The concentrations of methanol and cyclohexane (the reference compound) were measured by GC. The measured rate coefficient ratio of $k(\mathrm{HO}+$ methanol $) / k(\mathrm{HO}+$ cyclohexane $)$ is placed on an absolute basis using a rate coefficient of $k(\mathrm{HO}+$ cyclohexane $)=6.97 \times 10^{-12} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at 298 K (Atkinson, 2003).
(c) HO radicals were generated by the photolysis of $\mathrm{H}_{2} \mathrm{O}_{2}$ in air at 254 and 310 nm . The concentrations of methanol and $n$-pentane (the reference compound) were measured by GC. The measured rate coefficient ratio, $k(\mathrm{HO}+$ methanol $) / k(\mathrm{HO}+n$-pentane $)$, is placed on an absolute basis using a rate coefficient of $k(\mathrm{HO}+n$-pentane $)=3.80 \times 10^{-12} \mathrm{~cm}^{3}$ molecule $\mathrm{s}^{-1}$ at 298 K (Atkinson, 2003).
(d) HO radicals were generated by the photolysis of $\mathrm{CH}_{3} \mathrm{ONO}$ in air at $>300 \mathrm{~nm}$. The concentrations of methanol and ethanol (the reference compound) were measured by GC. The measured rate coefficient ratio of $k(\mathrm{HO}+$ methanol $) / k(\mathrm{HO}+$ ethanol $)=0.30 \pm 0.03$ is placed on an absolute basis using a rate coefficient of $k(\mathrm{HO}+$ ethanol $)=3.2 \times 10^{-12} \mathrm{~cm}^{3}$ molecule $^{-1} \mathrm{~s}^{-1}$ at 298 K (IUPAC, current recommendation).
(e) HO radicals were generated by the photolysis of $\mathrm{CH}_{3} \mathrm{ONO}$ in air at 1.0 bar ( 750 Torr). The concentrations of methanol and acetylene or ethene (the reference compounds) were measured by in situ FTIR spectroscopy. The measured rate coefficient ratios of $k(\mathrm{HO}+$ methanol $) / k(\mathrm{HO}+$ acetylene $)=1.01 \pm 0.06$ and $k(\mathrm{HO}+$ methanol $) / k(\mathrm{HO}+$ ethene $)=0.095 \pm 0.006$ are placed on an absolute basis using rate coefficients of $k(\mathrm{HO}+$ acetylene $)=7.8 \times 10^{-13} \mathrm{~cm}^{3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-1}$ at 750 Torr pressure of air or $\mathrm{O}_{2}$ and $296 \pm 2 \mathrm{~K}$ (Sørensen et al., 2003) and $k(\mathrm{HO}+$ ethene $)=8.61 \times 10^{-12}$ $\mathrm{cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at 296 K and atmospheric pressure of air (Atkinson, 1997). No effect of the presence of NaCl or $\mathrm{NH}_{4} \mathrm{NO}_{3}$ aerosol was observed.
(f) Relative to acetylene.
(g) Relative to ethene.
(h) Derived from measurements of the rate coefficients for the reactions of the HO radical with $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CD}_{3} \mathrm{OH}$ and $\mathrm{CD}_{3} \mathrm{OD}$ and of the DO radical with $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{OD}, \mathrm{CD}_{3} \mathrm{OH}$ and $\mathrm{CD}_{3} \mathrm{OD}$, assuming that secondary kinetic isotope effects are negligible.

## Preferred Values

$k=9.0 \times 10^{-13} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at 298 K .
$k=2.85 \times 10^{-12} \exp (-345 / T) \mathrm{cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ over the temperature range $210-300 \mathrm{~K}$.
$k_{2} / k=0.15$ at 298 K .

## Reliability

$\Delta \log k= \pm 0.08$ at 298 K.
$\Delta(E / R)= \pm 150 \mathrm{~K}$.
$\Delta k_{2} / k= \pm 0.10$ at 298 K .

## Comments on Preferred Values

The preferred rate coefficient is obtained by fitting the absolute rate coefficients of Wallington and Kurylo (1987), Hess and Tully (1989), Jiménez et al. (2003) and Dillon et al. (2005) to the three parameter expression $k=C T^{2} \exp (-D / T)$. This results in $k=6.38 \times 10^{-18} T^{2} \exp (144 / T) \mathrm{cm}^{3}$ molecule ${ }^{1} \mathrm{~s}^{-1}$ over the temperature range $210-866 \mathrm{~K}$. The preferred Arrhenius expression, $k=A \exp (-B / T)$, is centered at 245 K , and is derived from the three parameter equation with $A=C \mathrm{e}^{2} T^{2}$ and $B=D+2 T$. Note that the Arrhenius expression should not be used outside of the stated temperature range (210$300 \mathrm{~K})$; rather the three-parameter expression $k=6.38 \times 10^{-18} T^{2} \exp (144 / T) \mathrm{cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ should be employed. The absolute room temperature rate coefficients of Overend and Paraskevopoulos (1978), Ravishankara et al. (1978), McCaulley et al. (1989) and Nelson et al. (1990) are in good
agreement with the preferred values, as are the room temperature relative rate coefficients of Tuazon et al. (1983), Nelson et al. (1990), Picquet et al. (1998), Oh and Andino (2001) and Sørensen et al. (2002).

The kinetic (McCaulley et al., 1989) and product (Hägele et al., 1983; Meier et al., 1984) studies show that the reaction proceeds mainly by channel (1) at room temperature, as expected from the thermochemistry of the reaction pathways (1) and (2).

## References

Atkinson, R.: J. Phys. Chem. Ref. Data 26, 215, 1997.
Atkinson, R.: Atmos. Chem. Phys. 3, 2233, 2003.
Bott, J. F. and Cohen, N.: Int. J. Chem. Kinet. 23, 1075, 1991.
Dillon, T. J., Hölscher, D., Sivakumaran, V., Horowitz, A. and Crowley, J. N.: Phys. Chem. Chem. Phys. 7, 349, 2005.
Hägele, J., Lorenz, K., Rhäsa, D. and Zellner, R.: Ber. Bunsenges. Phys. Chem. 87, 1023, 1983.
Hess, W. P. and Tully, F. P.: J. Phys. Chem. 93, 1944, 1989.
IUPAC,: http://iupac.pole-ether.fr, 2013.
Jiménez, E., Gilles, M. K. and Ravishankara, A. R.: J. Photochem. Photobiol. A: Chem. 157, 237, 2003.

McCaulley, J. A., Kelly, N., Golde, M. F. and Kaufman, F.: J. Phys. Chem. 93, 1014, 1989.
Meier, U., Grotheer, H. H. and Just, Th.: Chem. Phys. Lett. 106, 97, 1984.
Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J. and Nielsen, O. J.: Int. J. Chem. Kinet. 22, 1111, 1990.
Oh, S. and Andino, J. M.: Int. J. Chem. Kinet. 33, 422, 2001.
Overend, R. and Paraskevopoulos, G.: J. Phys. Chem. 82, 1329, 1978.
Picquet, B., Heroux, S., Chebbi, A., Doussin, J.-F., Durand-Jolibois, R., Monod, A., Loirat, H. and Carlier, P.: Int. J. Chem. Kinet. 30, 839, 1998.
Ravishankara, A. R. and Davis, D. D.: J. Phys. Chem. 82, 2852, 1978.
Sørensen, M., Hurley, M. D., Wallington, T. J., Dibble, T. S. and Nielsen, O. J.: Atmos. Environ. 36, 5947, 2002.
Sørensen, M., Kaiser, E. W., Hurley, M. D., Wallington, T. J. and Nielsen, O. J.: Int. J. Chem. Kinet. 35, 191, 2003.
Tuazon, E. C., Carter, W. P. L., Atkinson, R. and Pitts Jr., J. N.: Int. J. Chem. Kinet. 15, 619, 1983.
Wallington, T. J. and Kurylo, M. J.: Int. J. Chem. Kinet. 19, 1015, 1987.


