IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet CGI_9

Datasheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. The citation for this data sheet is: IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (http://iupac.pole-ether.fr).

This datasheet last evaluated: June 2015; last change in preferred values: June 2015

$CH_2OO + CF_3C(O)CF_3 \rightarrow products$

Rate coefficient data

k/cm³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/Comments
Absolute Rate Coefficients $(3.0 \pm 0.3) \times 10^{-11}$ $(3.33 \pm 0.27) \times 10^{-11}$	293	Taatjes et al., 2012	PLP-PIMS (a)
	295	Liu et al., 2014	PLP-LIF (b)

Comments

- (a) CH₂OO was produced by the reaction of CH₂I + O₂. CH₂I was generated by 248-nm laser photolysis of diiodomethane, CH₂I₂, at 293 K and 4 torr total pressure in a large excess of O₂. The reacting mixture was monitored by tunable synchrotron photoionization mass spectrometry, which allowed characterisation of the PIMS for CH₂OO and its reaction products over the region 9.5 11.5 eV, and time-resolved direct detection of CH₂OO at m/z = 46 amu. The measured decay constant of CH₂OO, linearly dependent on known (excess) concentrations of hexafluoracetone (0.01 1.0 × 10^{14} molecule cm⁻³), was used to determine the rate constant. The uncertainty limits are 95%.
- (b) CH₂OO molecule generated by 351-nm laser flash photolysis of CH₂I/O₂ mixtures is accompanied by significant amounts of OH, observed by time resolved LIF. At least two different processes formed OH; a second, slower process appeared to be associated with the decay of CH₂OO. Using the OH signals as a proxy for the [CH₂OO] concentration in the presence of excess hexafluoroacetone the rate constant could be determined under pseudo first order conditions. k showed no pressure dependence over the range of 50–200 Torr, and the average value was $(3.33 \pm 0.27) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

	Parameter	Value	T/K
	k/cm^3 molecule ⁻¹ s ⁻¹	3.2×10^{-11}	298
Reliabili	ty		
	$\Delta \log k$	± 0.1	298

Comments on Preferred Values

The rate constants for CH₂OO reaction with CF₃C(O)CF₃ appear to be accurately determined. The rate coefficient is larger than was measured for unsubstituted carbonyl compounds using a similar technique and is independent of pressure. Although the temperature dependence has not been investigated it is likely to be weak. The recommended temperature and pressure independent value is an unweighted mean of the values reported by Welz et al. (2012) and Liu et al. (2014). The products of this reaction were secondary ozonides, together with the products of ozonide decomposition.

References

Liu, Y., Bayes, K. D. and Sander, S. P.: J. Phys. Chem. A, 118, 741, 2014.
Taatjes, C. A., Welz, O, Eskola, A. J., Savee, J. D., Osborn, D. L., Lee, E. P. F., Dyke, J.M., Mok, D. W. K., Shallcross, D. E. and Percival, C. J.: Phys. Chem. Chem. Phys., 14, 10391, 2012.