IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation – Data Sheet AROM_RAD11

Website: http://iupac.pole-ether.fr. See website for latest evaluated data. Data sheets can be downloaded for personal use only and must not be retransmitted or disseminated either electronically or in hardcopy without explicit written permission. The citation for this data sheet is: IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, http://iupac.pole-ether.fr. This data sheet last evaluated: June 2011; last change in preferred values: June 2011.

$HO_{2} + C_{6}H_{5}C(O)O_{2} \rightarrow O_{2} + C_{6}H_{5}C(O)OOH$ $\rightarrow O_{3} + C_{6}H_{5}C(O)OH$ $\rightarrow O_{2} + HO + C_{6}H_{5}C(O)O$ (3)

k/cm^3 molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute Rate Coefficients (3.82 ± 1.10) x 10^{-11} $1.1 \times 10^{-11} \exp[(364 \pm 200)/T]$	295 295-357	Roth et al., 2010	PLP-UVA (a)
Branching Ratios $k_3/k \approx 0.2$ $k_2/k = (0.15 \pm 0.10)$ $k_2/k = (0.2 \pm 0.1)$ $k_2/k = (0.3 \pm 0.1)$ $k_2/k = (0.4 \pm 0.1)$ $k_3/k = (0.20 \pm 0.05)$	298 295 316 337 357 295-357	Dillon and Crowley, 2008 Roth et al., 2010	PLP-LIF (b) PLP-UVA (a)

Rate coefficient data ($k = k_1 + k_2 + k_3$)

Comments

- (a) $C_6H_5C(O)O_2$ and HO_2 generated from the pulsed laser photolysis of Cl_2 -benzaldehyde-CH₃OH-O₂-N₂ mixtures at 107-160 mbar (80-120 Torr). *k*, k_2/k and k_3/k were determined from simulation of the transient decay traces recorded at 245-260 nm, for a range of $[HO_2]/$ $[C_6H_5C(O)O_2]$. Sensitivity to the branching ratios reported to be due to the variable impacts of channels (2) and (3) on the production and removal of absorbing species, i.e. O₃ production in channel (2) and $C_6H_5O_2$ production and secondary removal of benzaldehyde in channel (3).
- (b) Pulsed laser photolysis of Cl₂-benzaldehyde-CH₃OH-O₂-N₂ mixtures to generate the reagent radicals with HO₂ in large excess. The production and removal of HO radicals was followed using direct detection by LIF. k_3/k determined from simulation of the time dependence of the HO radical concentration, using a detailed chemical mechanism.

Parameter	Value	T/K
k/cm^3 molecule ⁻¹ s ⁻¹	3.7 x 10 ⁻¹¹	298
k/cm^3 molecule ⁻¹ s ⁻¹	$1.1 \ge 10^{-11} \exp(364/T)$	295-360
k_1/k	0.65	298
k_2/k	0.15	298
k_3/k	0.20	295-360
k_1/k	$0.8 - (k_2/k)$	295-360
k_2/k	47 exp(-1700/T)	295-360
Reliability		
$\Delta \log k$	± 0.3	298
$\Delta E/R$	± 300 K	
$\Delta k_1/k$	± 0.2	298
$\Delta k_2/k$	± 0.2	298
$\Delta k_3/k$	± 0.1	295-360
$\Delta(E_2/\mathbf{R}-E/\mathbf{R})$	± 500 K	

Preferred Values

Comments on Preferred Values

The preferred values of k are based on the sole kinetics study of Roth et al. (2010). It is noted that the values are about a factor of 2 - 3 greater than those recommended for the reaction of HO₂ with the structurally-similar peroxy radical, CH₃C(O)O₂, suggesting a relative activating influence of the C₆H₅- substituent. However, confirmatory studies are required to reduce the recommended uncertainty limits on both k and E/R.

The preferred values of the branching ratios are also based on those finally reported by Roth et al. (2010). It is noted that an alternative interpretation of the 295 K results, with $k_3/k = 0$, is also presented by Roth et al. (2010), and it therefore not clear how well determined their final values of k_3/k tabulated above are. However, Dillon and Crowley (2008) also report a value of $k_3/k \approx 0.2$ at 298 K from direct observation of HO production (albeit using a much lower value of k in their analysis); and the interpretation of the Roth et al. (2010) data with this branching ratio is therefore provisionally recommended. Additional product studies are clearly required to reduce the uncertainties on these branching ratios.

References

Dillon, T. J. and Crowley, J. N.: Atmos. Chem. Phys., 8, 4877, 2008. Roth, E., Chakir, A. and Ferhati, A.: J. Phys. Chem. A, 114, 10367, 2010.